
Defence R&D Canada – Atlantic

DEFENCE DÉFENSE
&

C++ classes for representing airfoils

David Hally

Technical Memorandum

DRDC Atlantic TM 2009-053

January 2010

Copy No. _____

Defence Research and
Development Canada

Recherche et développement
pour la défense Canada

This page intentionally left blank.

C++ classes for representing airfoils

David Hally

Defence R&D Canada – Atlantic
Technical Memorandum

DRDC Atlantic TM 2009-053

January 2010

Principal Author

David Hally

Approved by

D. Hopkin
Head/Maritime Asset Protection

Approved for release by

C. Hyatt
Head/Document Review Panel

ANSYS r© and CFX r© are registered trademarks of ANSYS, Inc. or its subsidiaries in
the United States or other countries.

CFX r© is a trademark of Sony Corporation in Japan.

Pointwise r© is a registered trademark and Pointwise GlyphTM is a trademark of
Pointwise Inc.

c© Her Majesty the Queen in Right of Canada as represented by the Minister of
National Defence, 2009

c© Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre
de la Défense nationale, 2009

Original signed by David Hally

Original signed by D. Hopkin

Original signed by Ron Kuwahara for

rhondasutherland
Rectangle

Abstract

A library of C++ classes for representing the geometry of airfoils is described. The
classes are based on the CurveLib library for representing differentiable curves. Air-
foils that have been represented explicitly include Joukowski airfoils, the NACA
4-digit, 5-digit, 16-series and 6-series airfoils, as well as the DTMB modification of
the NACA 66 airfoils commonly used for marine propellers. Generic airfoils can be
defined from offsets on the airfoil surface or from offsets defining mean line and thick-
ness curves. Several methods for closing the trailing edges of airfoils with a trailing
edge gap are also implemented.

Résumé

Le présent document décrit une bibliothèque de classes C++ permettant de représen-
ter la géométrie des surfaces aérodynamiques. Les classes de la bibliothèque CurveLib
permettent de représenter des courbes sous forme de fonctions différentiables. Les sur-
faces aérodynamiques qui ont été représentées comprennent les profils de Joukowski,
les profils NACA à 4 et à 5 chiffres, les profils de la série 16 et de la série 6, ainsi que
la modification DTMB des profils NACA 66, utilisés couramment pour les hélices de
navire. Les profils génériques peuvent être définis à l’aide de décalages par rapport à
la surface aérodynamique ou de décalages définissant la corde moyenne et les courbes
d’épaisseur. Plusieurs méthodes visant à terminer le bord de fuite des profils par un
écart sont également mises en œuvre.

DRDC Atlantic TM 2009-053 i

This page intentionally left blank.

ii DRDC Atlantic TM 2009-053

Executive summary

C++ classes for representing airfoils
David Hally; DRDC Atlantic TM 2009-053; Defence R&D Canada – Atlantic;
January 2010.

Background: The flow around marine propellers affects their performance and the
noise that they produce. Defence R&D Canada – Atlantic uses Computational Fluid
Dynamics (CFD) to calculate these flows so that the performance and noise of pro-
pellers can be evaluated and improved. Before the flow can be calculated, the ge-
ometry of the propeller must be represented in a fashion that can be used by the
CFD applications. The blade of a propeller is usually constructed from a series of
airfoil sections. The current document describes a library of C++ classes which can
be used to represent these airfoils so that they can be used as building blocks for the
generation of propeller geometry.

Principal results: A library of C++ classes for representing airfoils has been writ-
ten. The classes are based on the CurveLib library for representing differentiable
curves. Airfoils that have been represented explicitly include Joukowski airfoils, the
NACA 4-digit, 5-digit, 16-series and 6-series airfoils, as well as the DTMB modifica-
tion of the NACA 66 airfoils commonly used for marine propellers. Generic airfoils
can be defined from offsets on the airfoil surface or from offsets defining mean line and
thickness curves. Methods are implemented for closing the trailing edges of airfoils
with a trailing edge gap.

Significance: The library of C++ classes provides a useful tool for representing the
geometry of airfoils for use in CFD programs. They are used as elements for the
representation of the more complex geometry of marine propellers.

DRDC Atlantic TM 2009-053 iii

Sommaire

C++ classes for representing airfoils
David Hally ; DRDC Atlantic TM 2009-053 ; R & D pour la défense Canada –
Atlantique ; janvier 2010.

Introduction : L’écoulement autour des hélices de navire a une incidence sur leur
rendement et sur le bruit qu’elles produisent. R & D pour la défense Canada – Atlan-
tique utilise la dynamique des fluides numérique (CFD) pour calculer ces écoulements,
de sorte que le rendement et le bruit des hélices peuvent être évalués et améliorés.
Avant de calculer l’écoulement, il faut représenter la géométrie des hélices de ma-
nière à ce qu’elle puisse être utilisée dans les applications CFD. Les pales des hélices
sont habituellement composées de plusieurs éléments qui présentent chacun une sur-
face aérodynamique distincte. Le présent document décrit une bibliothèque de classes
C++ permettant de représenter la géométrie de ces surfaces aérodynamiques, de sorte
qu’elles peuvent être utilisées comme éléments structuraux pour générer la géométrie
des hélices.

Résultats : Une bibliothèque de classes C++ permettant de représenter la géomé-
trie des surfaces aérodynamiques a été créée. Les classes de la bibliothèque CurveLib
permettent de représenter des courbes sous forme de fonctions différentiables. Les sur-
faces aérodynamiques qui ont été représentées comprennent les profils de Joukowski,
les profils NACA à 4 et à 5 chiffres, les profils de la série 16 et de la série 6, ainsi que
la modification DTMB des profils NACA 66, utilisés couramment pour les hélices de
navire. Les profils génériques peuvent être définis à l’aide de décalages par rapport à
la surface aérodynamique ou de décalages définissant la corde moyenne et les courbes
d’épaisseur. Plusieurs méthodes visant à terminer le bord de fuite des profils par un
écart sont également mises en ?œuvre.

Portée : La bibliothèque de classes C++ est un outil pratique pour représenter la
géométrie des surfaces aérodynamiques à utiliser dans les programmes de CFD. Elles
sont utilisées comme éléments pour représenter la géométrie plus complexe des hélices
de navire.

iv DRDC Atlantic TM 2009-053

Table of contents

Abstract . i

Résumé . i

Executive summary . iii

Sommaire . iv

Table of contents . v

List of figures . vi

1 Introduction . 1

2 Airfoil geometry . 1

3 Subsidiary classes . 3

3.1 Exceptions . 3

4 The base airfoil class . 4

5 Airfoils defined by specifying the complete airfoil curve 7

5.1 Airfoils defined using offsets . 8

5.1.1 Offsets splined using a standard cubic spline 8

5.1.2 Offsets splined using B-splines 9

5.2 Joukowski airfoils . 12

5.2.1 The Joukowski conformal mapping 12

5.2.2 A class to represent a Joukowski airfoil 15

5.2.3 Classes to represent the potential flow around a Joukowski
airfoil . 16

6 Airfoils defined by specifying pressure and suction side curves 17

6.1 Airfoils defined using a thickness curve and a mean line offset curve 19

6.1.1 Classes to represent mean line offset curves 21

DRDC Atlantic TM 2009-053 v

6.1.1.1 Mean line offset curves constructed from piecewise
polynomial splines 23

6.1.1.2 NACA 4-digit mean line offset curve 24

6.1.1.3 NACA 5-digit mean line offset curve 26

6.1.1.4 Constant load mean line offset curve 28

6.1.1.5 Mean line offset curves which are circular arcs . . 30

6.1.1.6 Mean line offset curves derived from offsets 31

6.1.2 Classes to represent thickness curves 31

6.1.2.1 NACA 4-digit thickness curves 34

6.1.2.2 Thickness curve derived from offsets 34

6.1.3 NACA airfoils . 35

6.1.4 The DTMB modification of the NACA 66 airfoil 38

7 Defining airfoils from files . 39

7.1 The CLOSE TRAILING EDGE record 40

7.2 BLUNT TRAILING EDGE . 40

7.3 The JOUKOWSKI record . 41

7.4 The NACA record . 41

7.5 The NACA 66 DTMB(mod) record 42

7.6 The NAME record . 42

7.7 The OFFSETS record . 42

7.8 The THICKNESS DISTRIBUTION AIRFOIL record 43

7.9 Defining thickness distribution airfoils from files 43

7.9.1 A class for defining mean line offset curves from a file 45

7.9.2 A class for defining thickness curves from a file 45

8 Defining an airfoil from the command line 46

vi DRDC Atlantic TM 2009-053

9 Concluding remarks . 49

References . 51

Annex A: Integrating mean lines . 53

Annex B: Blunt closure of an airfoil . 57

Annex C: Prototypes for FormattedOStream 59

C.1 Constructors . 59

C.2 Indentation functions . 59

C.3 Line length functions . 60

C.4 Inserters . 60

C.5 Other member functions . 60

C.6 Manipulators . 61

List of symbols . 62

Index . 64

DRDC Atlantic TM 2009-053 vii

List of figures

Figure 1: The airfoil coordinate system and parameters. 2

Figure 2: The Joukowski mappings. 13

Figure 3: The lift characteristics as a function of ζm for a NACA 4-digit
airfoil with cambre c = 0.01. 25

Figure 4: The lift characteristics as a function of ζm for a NACA 5-digit
airfoil with cambre c = 0.01. 27

Figure 5: Constant load mean line offset curves with CL = 0.3 for six values
of a. 29

Figure 6: Trailing edge closure by extension. 33

Figure 7: Trailing edge closure with a parabola. 34

Figure 8: Blunt trailing edge closure. 34

Figure 9: The difference between airfoils generated with a BLUNT TRAILING

EDGE record inside and outside an OFFSETS record. 44

Figure B.1: Blunt trailing edge closure for an airfoil defined using the
complete airfoil curve. 58

Figure B.2: A case in which ξs is not well defined because the trailing edge
gap crosses the mean line obliquely. 58

viii DRDC Atlantic TM 2009-053

1 Introduction

The flow past airfoils is important in many aeronautical and marine applications.
This document describes a library of C++ classes, hereafter called the Airfoil library,
which can be used to represent the geometry of airfoils so that the flow around them
can be calculated using Computational Fluid Dynamics (CFD) programs. The classes
are based on the CurveLib library [1] for representing differentiable curves.

Several families of airfoils are represented explicitly in the Airfoil library: Joukowski
airfoils (Section 5.2), National Advisory Committee for Aeronautics (NACA) 4-digit,
5-digit, 16-series and 6-series airfoils [2] (Section 6.1.3), and the David Taylor Model
Basin (DTMB) modification of the NACA 66 airfoil commonly used in marine pro-
pellers (Section 6.1.4). Generic airfoils can be generated from offsets on the airfoil
surface (Section 5.1), or from mean lines and thickness curves (Section 6.1). The
mean lines and thickness curves can themselves be defined from explicit representa-
tions (Sections 6.1.1.2–6.1.1.5 and 6.1.2.1 or from offsets (Sections 6.1.1.6 and 6.1.2.2).

Methods for closing the trailing edges of airfoils with trailing edge gaps are also
implemented (Section 6.1.2 and Annex B).

Classes are also provided for defining airfoils from data in a file in OFFSRF for-
mat [6] (Section 7) and for specifying an airfoil from the program command line in a
Unix/Linux shell or DOS command window (Section 8).

2 Airfoil geometry

The Airfoil library allows the surface of an airfoil to be parameterized in two ways:

• Using ξ, a parameter which is 0 at the trailing edge on the pressure side, 1
2

at
the leading edge and 1 at the trailing edge on the suction side. The surface of
the airfoil using this parameterization is x(ξ); this will be called the complete
airfoil curve. Normally ξ is approximately equal to the fractional arclength
along the airfoil surface (since the leading edge must be at ξ = 1

2
, it cannot be

exactly equal to the fractional arclength unless the pressure and suction sides
of the airfoil have the same length).

• Using ζ, the fractional chord length along the straight line joining the leading
edge (ζ = 0) to the trailing edge (ζ = 1). This parameterization requires
that the airfoil surface be split into two different curves: p(ζ) for the pressure
side and s(ζ) for the suction side. These curves will normally have undefined
derivatives at the leading edge.

These parameters are illustrated in Figure 1.

DRDC Atlantic TM 2009-053 1

x

y

ξ = 0

ξ = 1
ξ = 0.5

ξ

ξ

ζ = 0 ζ = 0

Suction side

Pressure side

Figure 1: The airfoil coordinate system and parameters. The origin of the coordinates
is shown as if the airfoil is canonical. This airfoil has an open trailing edge.

The location of the leading edge, xle, cannot be determined simply from the geometry
of the airfoil. Instead it is defined to be x(1

2
), p(0) or s(0) (for a well-defined airfoil

these points should all be the same).

The trailing edge, xte, is 1
2

(
x(0) + x(1)

)
or 1

2

(
p(1) + s(1)

)
(for a well-defined airfoil

these points should be the same).

The chord line is the straight line connecting the leading edge and the trailing edge.
The chord length is the length of the chord line: i.e. the distance between the leading
and trailing edges.

The mean line is the line equidistant from the pressure side and suction side curves.
It is also difficult to define from the geometry alone. Airfoil classes are free to define it
to suit their purposes provided that it lies within the airfoil and includes the leading
and trailing edges. The default definition of the mean line is

m(ζ) = 1
2

(
p(ζ) + s(ζ)

)
. (1)

However, note that with this definition the derivative at the leading edge is not well-
defined as the derivatives of the pressure and suction side curves are not well-defined
there.

It is possible for an airfoil to be open at the trailing edge: i.e. x(0) 6= x(1) and
p(1) 6= s(1). If it is closed, it may be blunt (i.e. the unit normal at the pressure
side trailing edge is the same as the unit normal at the suction side trailing edge)
or sharp (the unit normals at the trailing edge differ). The airfoil classes provide
member functions for determining whether the trailing edge is closed or open, blunt
or sharp, and for closing trailing edges in various ways. If the trailing edge is closed
and blunt, the curves p(ζ) and s(ζ) will have undefined derivatives when ζ = 1.

2 DRDC Atlantic TM 2009-053

It is normal to define airfoils so that the leading and trailing edges lie at (0,0) and
(1,0) respectively; the airfoil is then called canonical. The airfoil classes do not require
an airfoil to be canonical but include a function that will scale and rotate any airfoil
so that it is.

3 Subsidiary classes

There are a number of classes used by the Airfoil library that have previously been
described in other reports. They are described briefly here.

VecMtx::VecN<N,F>

A vector of N elements of type F where F is usually a float or a double.
VecMtx::VecN<N,F> implements a full range of arithmetic operators. See Ref-
erence 1, Annex B for a complete description of the class.

CurveLib::Curve<N,V,F>

A differentiable curve having N arguments of type F and which returns a value
of type V. This class and its many derived classes are described in Reference 1.

3.1 Exceptions

All exceptions thrown by Airfoil classes and functions are derived from the base class
Error in the global namespace. An Error contains a message which can be retrieved,
appended to, or prepended to. The prototypes of the Error member functions are
listed in Reference 1, Annex F.

It is wise, when using the Airfoil library classes, to enclose the body of the code in a
try block which catches an Error. For example:

try {

... // Code which uses Airfoil library classes

}

catch (Error &e) {

// Write the error message

std::cerr << e.get_msg() << ’\n’;

}

Another important exception is ProgError, a specialization of Error. It is thrown
when an exception occurs that can clearly be recognized as a programming error
rather than a error by the user. The occurrence of a ProgError is an indication that
the program is faulty. The prototypes of the ProgError member functions are listed
in Reference 1, Annex F.1.

DRDC Atlantic TM 2009-053 3

4 The base airfoil class

All classes in the Airfoil library are encapsulated in the namespace Afoil.

All airfoils are derived from the base class Airfoil<F> which is itself derived from
Curve<1U,VecMtx::VecN<2U,F>,F>: that is, it is a one-parameter curve which re-
turns a 2-vector representing a point on the airfoil surface. This curve is a represen-
tation of x(ξ): i.e. each parameter is interpreted as a value of ξ. Each value of ξ has
type F and each component of the returned point also has type F. Usually F is float
or double.

Airfoil<F> provides the following alias for the type of the returned point:

typedef VecMtx::VecN<2U,F> Point

The airfoil curve represented by an instance of Airfoil<F> may be evaluated using
the following two member functions:

Point operator()(F xi) const

Returns the value of x(ξ) at ξ = xi.

Point operator()(F xi, unsigned d) const

Returns the value of the differentiated airfoil curve at xi. The number of
derivatives to be taken is specified by d. If d is zero, then this function is
equivalent to operator()(F xi) const.

For example, suppose that we defined a NACA 0012 airfoil by

using namespace Afoil;

NACAAirfoil<double> naca_afoil("0012");

To evaluate the point on the airfoil at ξ = 0.25 use:

Airfoil<double>::Point p = naca_airfoil(0.25);

To evaluate a tangent to the airfoil surface at the same value of ξ we could use:

Airfoil<double>::Point tangent = naca_airfoil(0.25,1);

All curves derived from Airfoil<F> in the Airfoil library have a default constructor:
i.e. a constructor having no arguments. The airfoil remains undefined if the default
constructor is used. It can later be defined using specialized member functions in the
derived class or by assignment to another airfoil.

Since an airfoil may remain undefined if a default constructor is used, Airfoil<F>
provides the following member function for determining whether the curve is defined
or not (it is actually inherited from Curve<N,V,F>).

4 DRDC Atlantic TM 2009-053

bool is_defined() const
Returns true if the airfoil has been defined; false if it has not.

An attempt to evaluate an undefined airfoil will cause an Error exception to be
thrown (see Section 3.1).

An important property of classes derived from Airfoil<F> is that they are poly-
morphic, even though the class Airfoil<F> has no virtual functions. For example,
suppose a NACAAirfoil<double> is assigned to an Airfoil<double>:

using namespace Afoil;

NACAAirfoil<double> naca_afoil("0012");

Airfoil<double> afoil;

afoil = naca_afoil;

When evaluated with the same arguments, afoil will return the same value as
naca_afoil.

Airfoil<F> has the following members in addition to the default constructor, copy
constructor, destructor and assignment operator.

typedef CurveLib::Curve<1U,Point,F> CurveType

The types of the curves defining the surface of the airfoil. These curves take
a scalar parameter (either ξ or ζ) for an argument and return a point in two-
dimensional space.

typedef CurveLib::Curve<1U,F,F> ParamCurveType

The type of the curves relating the curve parameters ξ and ζ. These curves
take a scalar value for an argument and return a scalar value.

CurveType suction_side() const

Returns a curve defining the suction side of the airfoil, s(ζ). The curve is
parameterized by the fractional chord length, ζ.

CurveType pressure_side() const

Returns a curve defining the pressure side of the airfoil, p(ζ). The curve is
parameterized by the fractional chord length, ζ.

CurveType mean_line() const

Returns a curve defining the mean line, m(ζ), as a function of the chord fraction
ζ. If the curve returned is undefined, there is no cambre.

The default version of this function defines the mean line as the average of the
pressure and suction side curves: m(ζ) = 1

2

(
p(ζ) + s(ζ)

)
. Note that this curve

(the default only) will not have a well-defined derivative at the leading edge.

DRDC Atlantic TM 2009-053 5

ParamCurveType zeta() const

Returns a curve giving the fractional chord length, ζ, as a function of the curve
parameter ξ.

ParamCurveType xi(bool pressure) const

Returns a curve giving the curve parameter ξ as a function of the fractional
chord length, ζ. If pressure is true, the mapping is for the pressure side of the
airfoil (ξ will be in the range [0, 1

2
]); otherwise it is for the suction side (ξ will

be in the range [1
2
, 1]).

bool is_closed() const
Returns true if the airfoil is closed at the trailing edge.

bool is_blunt() const
Returns true if the airfoil is blunt at the trailing edge: i.e. the unit normal at the
trailing edge on the suction side is the same as the unit normal on the pressure
side. If the trailing edge is not closed, it is not blunt.

void close_trailing_edge()

Ensures that the airfoil has a closed trailing edge; does nothing if the trailing
edge is already closed. The trailing edge will be sharp.

void make_trailing_edge_blunt(F radius)

If the airfoil has an open trailing edge, closes it such that it is blunt; does nothing
if the trailing edge is already closed. The argument radius is the approximate
radius of curvature of the trailing edge. It must be strictly positive.

bool is_canonical() const
True if the airfoil is canonical: i.e. its leading edge is at (0,0) and its trailing
edge is at (1,0).

void canonical()
Scales and rotates the airfoil so that the leading edge is at (0,0) and the trailing
edge is at (1,0).

Point leading_edge() const

Returns the location of the leading edge.

Point trailing_edge() const

Returns the location of the trailing edge.

6 DRDC Atlantic TM 2009-053

F chord_length() const

Returns the chord length.

F leading_edge_radius() const

Returns the radius of curvature at the leading edge. Since the curvature at the
leading edge is often discontinuous, it is best to treat the returned value as an
approximation.

F trailing_edge_radius() const

Returns the radius of curvature at the trailing edge. Throws a ProgError if the
trailing edge is open or sharp.

F radius_of_curvature(F xi) const
Returns the radius of curvature at ξ. Note that, as airfoils often consist of
piecewise curves, the curvature may not be continuous.

5 Airfoils defined by specifying the complete
airfoil curve

Airfoils can be defined either by specifying the complete airfoil curve, x(ξ), or by
specifying the pressure and suction side curves, p(ζ) and s(ζ). In this section we
consider airfoils which use the former method.

Since the airfoil is defined in terms of the parameter ξ, the parameter ζ must also be
defined in terms of ξ. This is done by projecting the average of x(ξ) and x(1 − ξ)
onto the chord line:

ζ(ξ) =

(
1
2

(
x(ξ) + x(1− ξ)

)
− xle

)
· (xte − xle)

|xte − xle|2
(2)

The inverse of this curve having its value in [0, 1
2
] (the pressure side) is denoted ξp(ζ):

ξp

(
ζ(ξ)

)
= ξ for all ξ ∈ [0, 1

2
] (3)

Similarly, the inverse of ζ(ξ) having its value in [1
2
, 1] is denoted ξs(ζ). The pressure

and suction curves are then defined by

p(ζ) = x
(
ξp(ζ)

)
; s(ζ) = x

(
ξs(ζ)

)
(4)

Notice that Equation (2) implies that ζ(1 − ξ) = ζ(ξ) which in turn requires that
ξp(ζ) = 1− ξs(ζ). Therefore the default mean line curve can be written

m(ζ) = 1
2

(
p(ζ)+s(ζ)

)
= 1

2

[
x
(
ξp(ζ)

)
+x
(
1−ξp(ζ)

)]
= 1

2

[
x
(
1−ξs(ζ)

)
+x
(
ξs(ζ)

)]
(5)

Therefore the curve 1
2

(
x(ξ) + x(1− ξ)

)
also traces out the mean line for ξ in [0, 1

2
] or

[1
2
, 1].

DRDC Atlantic TM 2009-053 7

5.1 Airfoils defined using offsets
The Airfoil library provides two classes that will define an airfoil by splining a list
of (x, y) offsets. In the first a standard cubic spline (see Reference 4, Section 8.3) is
used; in the second B-splines are used. The offsets are splined to generate the surface
of the airfoil in terms of the parameter ξ. The curves relating ξ to the fractional chord
length ζ and the curves giving the pressure and suction sides of the airfoil surface
parameterized by ζ are determined from the curve parameterized by ξ.

The offsets should be ordered starting at the trailing edge on the pressure side, pro-
ceeding along the pressure side to the leading edge, then back along the suction side
to the trailing edge. There must be an offset point at the leading edge; the spline
parameterization is adjusted so that this point has a ξ-value of 1

2
.

The enum TrailingEdgeSpec is used for specifying the geometry at the trailing edge
of airfoils defined using offsets. It can have the following values:

open_te

The trailing edge of the airfoil will be left open.

sharp_te

The trailing edge will be closed but will remain sharp: i.e. the normals at the
trailing edge on the pressure and suction sides will differ.

blunt_te

The trailing edge will be closed and the normals at the trailing edge on the
pressure and suction sides will be the same.

5.1.1 Offsets splined using a standard cubic spline

The class OffsetAirfoil<F> is a specialization of Airfoil<F> that defines the airfoil
surface by interpolating a list of (x, y) offsets with a standard cubic spline. It has the
following members in addition to the default constructor, copy constructor, destructor
and assignment operator.

typedef typename Airfoil<F>::Point Point

The type of a point on the airfoil.

typedef std::vector<Point> OffsetList

The type of the list of offsets.

OffsetAirfoil(const OffsetList &list, unsigned ile,

TrailingEdgeSpec te_spec = open_te)

Makes an airfoil using the offsets in list. The offset point at the leading edge

8 DRDC Atlantic TM 2009-053

has index ile: i.e. the leading edge point is list[ile].

The offset points are interpolated using a standard cubic spline (see Reference 4,
Section 8.3). The argument te_spec indicates how the trailing edge will be
treated.

If the points at the trailing edge on the pressure and suction sides are the same
and if te_spec is blunt_te, then the cubic spline will be periodic. Otherwise
the spline will be a simple cubic spline.

If the points at the trailing edge on the pressure and suction sides differ and
if te_spec is sharp_te or blunt_te, then either close_trailing_edge() or
make_trailing_edge_blunt() is called to close the trailing edge.

void define(const OffsetList &list, unsigned ile,

TrailingEdgeSpec te_spec = open_te)

Defines the airfoil in a manner similar to the constructor described above.

void close_trailing_edge()

This function, inherited from Airfoil<F>, closes the trailing edge by closing the
ξ-curve using a parabola starting at ζ0 = 1− 1

2
∆ where ∆ is the separation of

the points at the trailing edge: ∆ = |x(1)−x(0)|. A straight line is constructed
which passes through the mean line at m(ζ0) and is normal to it. The values
of ξ where the line crosses the ξ-curve on the pressure and suction sides will be
denoted ξp and ξs. The ξ-curve, x(ξ), is then replaced by:

xnew(ξ) =

x(ξ)−

(ξ − ξp)
2
(
x(0)− xte

)
ξ2
p

, ξ ∈ [0, ξp]

x(ξ), ξ ∈ [ξp, ξs]

x(ξ)−
(ξ − ξs)

2
(
x(1)− xte

)
(1− ξs)2

, ξ ∈ [ξs, 1]

(6)

where xte = 1
2

(
x(0) + x(1)

)
.

void make_trailing_edge_blunt(F radius)

If the trailing edge is open, this function, inherited from Airfoil<F>, closes it
such that it is blunt. If the trailing edge is already closed, nothing is done. The
algorithm used is described in Annex B.

5.1.2 Offsets splined using B-splines

A BSplineOffsetAirfoil<F> is an airfoil defined using a list of offsets which are
splined using B-splines with a prescribed knot sequence. Unlike OffsetAirfoil<F>,
the knots need not lie at the offset points.

DRDC Atlantic TM 2009-053 9

The main use of BSplineOffsetAirfoil<F> is when several airfoils are to be com-
bined to create a surface. Each airfoil is represented as a BSplineOffsetAirfoil<F>

with the same knot sequence. The spline coefficients can then be splined to generate
a tensor product B-spline surface (see Reference 4, Section 9.2).

Currently it is not possible to make a BSplineOffsetAirfoil<F> have a blunt trailing
edge.

typedef std::vector<Point> OffsetList

The type of the list of offsets.

typedef typename Spline::BSpline<Point,F>::CoefArray CoefArray

The type of the list of B-spline coefficients use by the spline of the airfoil surface
as a function of ξ.

BSplineOffsetAirfoil(const OffsetList &list, unsigned ile,

TrailingEdgeSpec te_spec = open_te)

Makes an airfoil by splining the offsets in list to obtain the airfoil surface
parameterized using ξ. The offset point at the leading edge has index ile. The
spline will be cubic and its knots will be calculated from the ξ-values of the
offset points (determined using make_xi_values_from_offsets()) using the
not-a-knot condition. The argument te_spec indicates how the trailing edge
will be treated. Currently te_spec is not allowed to be blunt_te. If te_spec
is sharp_te, the trailing edge will be closed even if the offset points there differ.

BSplineOffsetAirfoil(const OffsetList &list, unsigned ile, unsigned k,

const Spline::KnotSeq<F> &kts,

TrailingEdgeSpec te_spec = open_te)

Makes an airfoil by splining the offsets in list to obtain the airfoil surface
parameterized using ξ. The offset point at the leading edge has index ile. The
order of the spline is k and its knot sequence is kts. The argument te_spec

indicates how the trailing edge will be treated. Currently te_spec is not allowed
to be blunt_te. If te_spec is sharp_te, the trailing edge will be closed even
if the offset points there differ.

The size of list must equal k plus the size of kts.

BSplineOffsetAirfoil(const Spline::KnotSeq<F> &xi_vals,

const OffsetList &list,

TrailingEdgeSpec te_spec = open_te)

Makes an airfoil by splining the offsets in list to obtain the airfoil surface
parameterized using ξ. The ξ-values of the offset points are in xi_vals. The
spline will be cubic. The argument te_spec indicates how the trailing edge will

10 DRDC Atlantic TM 2009-053

be treated. Currently te_spec is not allowed to be blunt_te. If te_spec is
sharp_te, the trailing edge will be closed even if the offset points there differ.

The size of list must equal the size of xi_vals and also equal k plus the size
of kts.

BSplineOffsetAirfoil(const Spline::KnotSeq<F> &xi_vals,

const OffsetList &list, unsigned k,

const Spline::KnotSeq<F> &kts,

TrailingEdgeSpec te_spec = open_te)

Makes an airfoil by splining the offsets in list to obtain the airfoil surface
parameterized using ξ. The ξ-values of the offset points are in xi_vals. The
order of the spline is k and its knot sequence is kts. The argument te_spec

indicates how the trailing edge will be treated. Currently te spec is not allowed
to be blunt_te. If te_spec is sharp_te, the trailing edge will be closed even
if the offset points there differ.

The size of list must equal the size of xi_vals and also equal k plus the size
of kts.

void define(const OffsetList &list, unsigned ile,

TrailingEdgeSpec te_spec = open_te)

Defines the airfoil in the same manner as the constructor with the same argu-
ments.

void define(const OffsetList &list, unsigned ile,

unsigned k, const Spline::KnotSeq<F> &kts,

TrailingEdgeSpec te_spec = open_te)

Defines the airfoil in the same manner as the constructor with the same argu-
ments.

void define(const Spline::KnotSeq<F> &xi_vals, const OffsetList &list,

TrailingEdgeSpec te_spec = open_te)

Defines the airfoil in the same manner as the constructor with the same argu-
ments.

void define(const Spline::KnotSeq<F> &xi_vals, const OffsetList &list,

unsigned k, const Spline::KnotSeq<F> &kts,

TrailingEdgeSpec te_spec = open_te)

Defines the airfoil in the same manner as the constructor with the same argu-
ments.

unsigned order() const

Returns the order of the spline of the airfoil surface parameterized using ξ.

DRDC Atlantic TM 2009-053 11

const typename Spline::KnotSeq<F>& knots() const

Returns the knot sequence used by the airfoil surface parameterized using ξ.

const CoefArray& Bspline_coefs() const

Returns the B-spline coefficients used by the airfoil surface parameterized us-
ing ξ.

5.2 Joukowski airfoils

Joukowski airfoils are important because there is an analytic solution to the potential
flow around them. This makes them suitable for verification of software calculating
potential flow.

5.2.1 The Joukowski conformal mapping

A Joukowski airfoil is defined in the complex plane by the conformal mapping w(z)
defined by:

q(z) = C + (a− C)z; C = x + iy (7)

p(z) = q(z) +
a2

q(z)
(8)

w(z) = A + Bp(z); A =
1

2

(
1 +

x2

(a− x)2

)
; B =

a− 2x

4(a− x)2
(9)

where a is real. The mapping from z to q shifts the unit circle to a new circle centred
at C and passing through (a, 0). The mapping from q to p then transforms this circle
to an airfoil shape with trailing edge at (2a, 0). The mapping from p to w then scales
and translates the airfoil so that it is canonical. Each of the mappings is illustrated
in Figure 2.

The surface of the airfoil can be parameterized with the angle θ used to traverse the
unit circle: z = eiθ. The trailing edge is at θ = 0 or 2π and the leading edge is at

θle = π + 2φ; φ = arctan

(
y

a− x

)
; zle =

C − a

a− C
(10)

The thickness of the airfoil is controlled by x. When it is small, the maximum
thickness occurs when θ = 2π/3 and is given by:

t = −3
√

3x

4a
(11)

12 DRDC Atlantic TM 2009-053

z plane

(-1,0) (1,0)θ

q plane

(a,0)
(x,y) θ

φ

p plane

(2a,0)

w plane

(1,0)

Figure 2: The Joukowski mappings.

DRDC Atlantic TM 2009-053 13

As x approaches zero, the airfoil becomes infinitely thin. Therefore we can define a
mean line by setting x = 0:

wm(θ) =
(a + q)2

4aq
; q = iy + (a− iy)eiθ (12)

The cambre is determined from the point where Im(dwm/dθ) = 0. To first order in y

c =
y

2a
(13)

We can specify a canonical airfoil uniquely given c and t by setting a = 1 and using
the first order expressions of Equations (11) and (13).

x = − 4t

3
√

3
; y = 2c (14)

The class JoukowskiMapping<F> represents the conformal mapping w(z) from the
region in the complex plane exterior to the unit circle, to the region exterior to a
Joukowksi airfoil in the complex plane. The airfoil is canonical: i.e. the leading and
trailing edges are at w = 0 and w = 1 respectively.

JoukowskiMapping<F> is derived from CurveLib::Curve<1U,Cmplx,Cmplx>, where
Cmplx is an alias for std::complex<F>: i.e. JoukowskiMapping<F> is a curve with
a complex argument returning a complex value. It has the following member func-
tions the default and copy constructors, virtual destructor, assignment operator and
members inherited from its base classes.

JoukowskiMapping(F t, F c)

Makes a Joukowski mapping for an airfoil with thickness t and cambre c. The
thickness and cambre are used to define x and y using the first order expressions
of Equation (14); therefore the thickness and cambre of the airfoil will only
approximate the values of t and c.

void define(F t, F c)

Redefines the airfoil in the same manner as the constructor above.

F cambre() const
Returns the cambre used when defining the mapping.

F thickness() const
Returns the thickness used when defining the mapping.

FloatType leading_edge() const

Returns the z-value of the leading edge.

14 DRDC Atlantic TM 2009-053

It is often also convenient to be able to evaluate the inverse Joukowski mapping: i.e.
evaluate z given w:

p(w) =
w − A

B
; q(w) = 1

2

(
p(w)±

√
p(w)2 − 4a2

)
; z(w) =

q(w)− C

a− C
(15)

In the evaluation of q(w), the root which makes |z(w)| > 1 must be chosen.

This mapping is implemented by the class InvJoukowskiMapping<F> which has con-
structors and define function similar to JoukowskiMapping<F>. It also has the
following constructor:

InvJoukowskiMapping(JoukowskiMapping<F> jm)

Makes a mapping which is the inverse of jm.

5.2.2 A class to represent a Joukowski airfoil

The class JoukowskiAirfoil<F> represents a Joukowski airfoil. It is derived from
Airfoil<F>.

The airfoil surface can be traced using a Joukowski mapping with z = eiθ. To
conform with the parameterization of the Afoil classes, θ must be converted to a
new parameter whose value is 0 or 1 at the trailing edge and 1

2
at the leading edge.

This can be done using the mapping:

θ = −2πξ + 32φξ2(1− ξ)2 (16)

Notice that as ξ increases from 0 to 1, θ decreases from 0 to −2π, thus traversing the
airfoil clockwise in conformance with the requirements for the parameter ξ.

We use ξ2(1−ξ)2 in Equation (16), rather than ξ(1−ξ), so that the du/dη is the same
on both sides of the airfoil at the trailing edge. This makes the mean line defined by
1
2

(
u(ξ) + u(1− ξ)

)
more nearly equidistant between the two sides of the airfoil near

the trailing edge.

The parameter ξ defined in Equation (16) has the drawback that du/dξ = 0 at the
trailing edge. This might cause problems, for example when generating a normal to
the airfoil at the trailing edge. We can avoid this problem by defining

θ = −2πη + 32φη2(1− η2); η = 1
2

(
1 +

√
ξ −

√
1− ξ

)
(17)

JoukowskiAirfoil<F> has the following members as well as the default and copy
constructors, virtual destructor, assignment operator and members inherited from its
base classes.

DRDC Atlantic TM 2009-053 15

JoukowskiAirfoil(F t, F c, bool finite_te_deriv = false)

Makes a Joukowski airfoil with thickness t and cambre c. The thickness and
cambre are used to define x and y using the first order expressions of Equa-
tion (14); therefore the thickness and cambre of the airfoil will only approximate
the values of t and c.

If finite_te_deriv is true, then the ξ-parameterization defined by Equa-
tion (17) is used to ensure that the first derivative of the airfoil ξ-curve will
be finite at the trailing edge. If finite_te_deriv is false, then the parameter-
ization defined by Equation (16) is used and the first derivative at the trailing
edge will be zero. The ξ-curve with finite derivatives evaluates somewhat less ef-
ficiently than the one with zero derivatives; however, it is better behaved when,
for example, one wishes to generate a normal to the airfoil at the trailing edge.

void define(F t, F c, bool finite_te_deriv = false)

Redefines the airfoil in the same manner as the constructor above.

5.2.3 Classes to represent the potential flow around a Joukowski
airfoil

The namespace Afoil also includes classes that can be used to determine the potential
flow around a Joukowski airfoil. This is an important verification case for flow solvers.

The complex potential for the flow past a Joukowski airfoil with speed V at infinity
at angle of attack α is:

Φ =
V (a− 2x)|a− C|

4(a− x)2

[(
ze−i(α+φ) + ei(α+φ)/z

)
+ 2i sin(α + φ) ln

(z

a

)]
(18)

The complex velocity is obtained by differentiating the potential with respect to w:

vx − ivy =
dΦ

dw
=

dφ

dz

/
dw

dz
(19)

Special care must be taken when evaluating the complex velocity at the trailing edge
since dw/dz = 0 there.

The classes JoukowskiPotential<F> and JoukowskiVelocity<F> are curves with
complex arguments which evaluate the complex potential and complex velocity re-
spectively for the flow past a Joukowski airfoil. They are both derived from the class
Curve<1U,std::complex<F>,std::complex<F> > in namespace CurveLib.

The parameter of these curves is the value of z used in the Joukowski mapping: it is
restricted to values outside the unit circle in the complex plane. The point at which
the potential is evaluated is w(z), where w is the Joukowski mapping.

16 DRDC Atlantic TM 2009-053

JoukowskiPotential<F> has the following members as well as the default and copy
constructors, virtual destructor, assignment operator and members inherited from
its base classes. The members of JoukowskiVelocity<F> are identical: only the
returned value is different.

JoukowskiPotential(F t, F c, F v, Angle<F> alpha)

Makes a curve which evaluates the potential for an airfoil with thickness t and
cambre c. The flow at infinity is v and the angle of attack is alpha.

The thickness and cambre are used to define x and y using the first order
expressions of Equation (14); therefore the thickness and cambre of the airfoil
will only approximate the values of t and c.

void define(F t, F c, F v, Angle<F> alpha)

Redefines the airfoil in the same manner as the constructor above.

6 Airfoils defined by specifying pressure and
suction side curves

If an airfoil is defined by specifying the pressure and suction side curves, then the
parameter ξ must be defined in terms of ζ and the complete airfoil curve, x(ξ), must
be defined from p(ζ) and s(ζ). We first consider the mapping from ζ to ξ.

The pressure and suction side curves are sampled at an initial set of ζ values, ζi,
for i ∈ [1, N]. One of the sample points, i = ile is chosen to be at the leading
edge. Straight line segments between the sampled points are used to approximate the
arclength between each adjacent pair of points. For each i, a new point is sampled
at ζi+1/2 = 1

2
(ζi + ζi+1). Suppose that these points lie on the pressure side. Then if∣∣p(ζi+1/2)− p(ζi)

∣∣+ ∣∣p(ζi+1)− p(ζi+1/2)
∣∣ > ∣∣p(ζi+1)− p(ζi)

∣∣+ ε|xte − xle| (20)

the point p(ζi+1) is added to the sample set; otherwise the straight line is deemed a
sufficiently accurate approximation to the segment. The factor ε is set to 10−4. The
points on the suction side are refined in a similar way.

Once every segment is sufficiently accurate, the lengths of the segments are used to
approximate the fractional arclength, ai, at each sample point. We define ξ as a
function of a by

ξ = a +

(
1
2
− ale

)
a2(1− a)2

a2
le(1− ale)2

(21)

where ale is the value of a at the leading edge. This definition ensures that ξ(0) = 0,
ξ(ale) = 1

2
and ξ(1) = 1 as required.

DRDC Atlantic TM 2009-053 17

A Hermite spline (see Reference 4, Section 8) is used to interpolate the ζi with respect
to the ξi = ξ(ai) yielding the curve ζ(ξ). The slopes of the spline are first calculated
so that the second derivatives of the spline are continuous at the knots (a standard
cubic spline). The slope at the leading edge is then adjusted to be exactly zero. The
algorithm of Fritsch and Carlson [3] is then used to ensure that the spline is monotonic
on each of the pressure and suction sides.

The complete airfoil curve is defined by

x(ξ) =

{
p
(
ζ(ξ)

)
for ξ ∈ [0, 1

2
]

s
(
ζ(ξ)

)
for ξ ∈ [1

2
, 1]

(22)

Typically the pressure and suction side curves have a form similar to

p(ζ) = −n̂
√

2rζ + o(ζ); s(ζ) = n̂
√

2rζ + o(ζ) (23)

near the leading edge where r is the radius of curvature at the leading edge. From
the spline expansion of ζ(ξ) we have

ζ =

{
a(ξ − 1

2
)2 + o(ξ3) for ξ < 1

2

b(ξ − 1
2
)2 + o(ξ3) for ξ > 1

2

(24)

where a and b are constants whose values are generally different. This reflects the fact
that, by setting the slope to zero at the leading edge, we have altered the spline so
that its second derivative is no longer continuous there. Substituting Equations (24)
and (23) into Equation (22) gives

x(ξ) =

{ √
2ra (ξ − 1

2
)n̂ + o

(
(ξ − 1

2
)2
)

for ξ < 1
2√

2rb (ξ − 1
2
)n̂ + o

(
(ξ − 1

2
)2
)

for ξ > 1
2

(25)

Since, in general, a 6= b, the curve x(ξ) will have discontinuous slope at the leading
edge. Since we want x(ξ) to be smooth, it is necessary to adjust ζ(ξ) at the leading
edge so that its second derivative is continuous. This is done as follows.

Let t−1 and t1 be the spline knots for the curve ζ(ξ) that lie on either side of the
leading edge. The values of a and b can be determined from the spline coefficients.
We define a new function ζ(ξ) by

ζnew(ξ) = ζ(ξ) +

(b− a)(ξ − 1
2
)2(ξ − t−1)

3

2(1
2
− t−1)3

for ξ ∈ [t−1,
1
2
]

(a− b)(ξ − 1
2
)2(ξ − t1)

3

2(1
2
− t1)3

for ξ ∈ [1
2
, t1]

0 otherwise

(26)

18 DRDC Atlantic TM 2009-053

The new function is smooth and has continuous second derivatives.

There is still the problem that because p′(1
2
) and s′(1

2
) are not well-defined, x(ξ)

as defined by Equation (22) will have undefined derivatives when evaluated at the
leading edge, even though the derivatives are well-defined in the limit ξ → 1

2
. To

avoid this problem we use the representation of x(ξ) in Equation (22) except in a
very small region close to the leading edge where we use two parabolic segments
instead. The parabolic segments cover the regions ξ ∈ [1

2
− δ, 1

2
] and ξ ∈ [1

2
, 1

2
+ δ]

with δ = ε3/4, where ε is the smallest floating point number of type F such that
1 + ε is indistinguishable from 1. The coefficients of the parabolae are chosen so that
they interpolate the points p0 = p

(
ζ(1

2
− δ)

)
, p1 = p

(
ζ(1

2
− 1

2
δ)
)

and p2 = p
(
ζ(1

2
)
)

on the pressure side and s0 = s
(
ζ(1

2
)
)
, s1 = s

(
ζ(1

2
+ 1

2
δ)
)

and s2 = s
(
ζ(1

2
+ δ)

)
on the

suction side. We now define the complete airfoil curve by

x(ξ) =

p
(
ζ(ξ)

)
for ξ ∈ [0, 1

2
− δ]

p0 +
(3p0 − 4p1 + p2)

(
ξ − 1

2

)
δ

+
(2p0 − 4p1 + 2p2)

(
ξ − 1

2

)2
δ2

for ξ ∈ [1
2
− δ, 1

2
]

s0 −
(3s0 − 4s1 + s2)

(
ξ − 1

2

)
δ

+
(2s0 − 4s1 + 2s2)

(
ξ − 1

2

)2
δ2

for ξ ∈ [1
2
, 1

2
+ δ]

s
(
ζ(ξ)

)
for ξ ∈ [1

2
+ δ, 1]

(27)

If the trailing edge is blunt, a similar process is used on the regions ξ ∈ [0, δ] and
ξ ∈ [1− δ, 1].

The curve x(ξ) is not smooth at ξ = 1
2
− δ, 1

2
and 1

2
+ δ, but the discontinuities are

so small (because δ is so small) that for all practical purposes this is inconsequential.

6.1 Airfoils defined using a thickness curve and a
mean line offset curve

A common method of defining airfoils is via a thickness curve (also known as a
thickness distribution) and a mean line offset curve. Define the thickness curve t(ζ)
to be a non-negative scalar-valued function such that t(0) = 0 and t(ζ) > 0 for all ζ
in (0,1). The value of t(ζ) is the half-thickness of the airfoil at ζ. Also define a mean
line offset curve m(ζ) to be a scalar-valued function giving the y-offset of the mean
line from the chord line. The two sides of the airfoil are defined by:

p(ζ) = m(ζ)− n̂(ζ)t(ζ) (28)

DRDC Atlantic TM 2009-053 19

s(ζ) = m(ζ) + n̂(ζ)t(ζ) (29)

m(ζ) =
(
xle + ζ(xte − xle)

)
x̂ + m(ζ)ŷ (30)

where m(ζ) is the mean line (note that this is different from the mean line offset)
and n̂ = (nx, ny) is a unit normal to the mean line:

nx = − m′(ζ)√
m′(ζ)2 + (xte − xle)2

; ny =
xte − xle√

m′(ζ)2 + (xte − xle)2
(31)

The airfoil is canonical if xle = 0, xte = 1 and m(0) = m(1) = 0.

Notice that because the normal depends on the derivative of the mean line offset
curve, p(ζ) and s(ζ) will have one degree less continuity than m(ζ). In particular, if
m(ζ) is only C1, then p(ζ) and s(ζ) will only be C0.

ThickDistAirfoil<F> is a base class for airfoils which are defined using a thickness
curve and a mean line offset curve represented by the classes ThicknessCurve<F>

and MeanLineOffset<F> respectively: see Sections 6.1.1 and 6.1.2. It is derived from
the base class Airfoil<F> and has the following members as well as the default and
copy constructors, virtual destructor, assignment operator and those inherited from
its base classes.

ThickDistAirfoil(ThicknessCurve<F> t, MeanLineOffset<F> m,

F xle = F(0), F xte = F(1))

Makes an airfoil with thickness curve t and mean line offset m. The x-values of
the leading and trailing edges are given by xle and xte.

MeanLineOffset<F> mean_line_offset() const
Returns the mean line offset curve, m(ζ). If the returned curve is undefined (i.e.
if mean_line_offset().is_defined() returns false), then the airfoil has no
cambre.

Note that the returned curve is scalar-valued unlike the curve returned by the
inherited function mean_line() whose value is a 2-vector representing the (x, y)
coordinates of a point on the mean line.

void set_mean_line_offset(MeanLineOffset<F> ml)
Sets the mean line offset curve to ml. If ml is undefined (i.e. if ml.is_defined()
is false), the airfoil will have no cambre.

ThicknessCurve<F> thickness() const
Returns a curve defining the thickness curve, t(ζ).

void set_thickness(ThicknessCurve<F> t, bool blunt = false)

Sets the thickness curve to t. If blunt is true, then the airfoil will assume that
the thickness curve is closed and blunt.

20 DRDC Atlantic TM 2009-053

void close_trailing_edge_by_extension()

Ensures that the airfoil has a closed trailing edge by extending the range of
the thickness curve until it is zero; the parameter ζ is then scaled so that it is
1 at the new trailing edge location: see Section 6.1.2 for a description of the
algorithm used. The trailing edge will be sharp.

An Error will be thrown if the slope of the thickness curve is not strictly
negative at ζ = 1.

void close_trailing_edge_with_parabola(F zeta0 = F(1))

Ensures that the thickness curve has a closed trailing edge by adding a parabolic
curve to it starting at ζ = zeta0. The parabola is chosen so that the thickness
curve is smooth: see Section 6.1.2 for a description of the algorithm used. The
new trailing edge is sharp.

If the value of zeta0 is not in [0,1) the location of maximum thickness is used.

If the trailing edge is already closed, nothing is done.

void close_trailing_edge()

This function, inherited from Airfoil<F>, closes the trailing edge by closing
the thickness curve using a parabola starting at ζ = 1 − 1

2
∆ where ∆ is the

thickness at the trailing edge: i.e. if afoil is a ThickDistAirfoil<F>,

afoil.close_trailing_edge();

is equivalent to:

F half_delta = afoil.thickness()(1);

afoil.close_trailing_edge_with_parabola(1-half_delta);

6.1.1 Classes to represent mean line offset curves

An important class of airfoils defines the airfoil shape using a mean line offset curve
and a thickness curve: see Section 6.1. In this section we describe classes to represent
mean line offset curves.

A mean line offset curve, m(ζ), is said to be canonical if its value at both ζ = 0 and
ζ = 1 is zero. This is a necessary condition for the airfoil using the mean line offset
curve to be canonical.

The value of the maximum offset of the mean line is the cambre, c. The location of
the maximum offset is denoted ζm.

For thin airfoils, the mean line offset curve is sufficient to define the characteristics
of the airfoil lift (see, for example, Abbot and von Doenhoff [2], Chapter 4). The lift

DRDC Atlantic TM 2009-053 21

coefficient predicted by thin airfoil theory for a canonical meanline offset curve is

CL = 2π(α− α0); α0 = − 1

π

∫ 1

0

m(ζ)f1(ζ) dζ; f1(ζ) =
1√

ζ(1− ζ)3
(32)

where α0 is the angle of zero lift. The pitching moment around ζ = 1
4

is

Cm = 2

∫ 1

0

m(ζ)f2(ζ) dζ +
π

2
α0; f2(ζ) =

1− 2ζ√
ζ(1− ζ)

(33)

When α = αi, with

αi =
1

2π

∫ 1

0

m(ζ)f3(ζ) dζ; f3(ζ) =
1− 2ζ√
ζ3(1− ζ)3

(34)

the velocity field near the leading edge of an infinitesimally thin airfoil has no singu-
larities; αi is called the ideal angle of attack. The lift coefficient at the ideal angle of
attack is called the ideal or design lift coefficient, CLi.

Notice that f2(ζ) and f3(ζ) are antisymmetric about ζ = 1
2
. Therefore, if the mean

line offset is symmetric about ζ = 1
2
, the integrals in Equations (33) and (34) vanish

and we have

αi = 0; CLi = −2πα0; Cm =
πα0

2
= −CLi

4
(35)

Mean line offset curves are represented by the class MeanLineOffset<F> derived from
the base class CurveLib::Curve<1U,F,F>. It has the following public members as
well as the default and copy constructors, virtual destructor, assignment operator and
members inherited from its base classes.

typedef CurveLib::Curve<1U,F,F> CurveType

The type of the curve used to represent the mean line offset curve.

MeanLineOffset()
Makes a canonical mean line offset curve having no cambre.

MeanLineOffset(CurveType crv)

Makes a mean line offset curve using the curve crv.

void define(CurveType crv)

Redefines the mean line offset curve using the curve crv. If crv is undefined,
the mean line will have no cambre.

22 DRDC Atlantic TM 2009-053

F cambre() const
Returns the cambre.

bool is_canonical() const
True if the mean line offset curve is canonical.

F zeta_at_maximum_ordinate() const
Returns the location of the maximum ordinate.

F design_lift_coefficient() const

Returns the design lift coefficient. The mean line offset curve must be canonical.

Angle<F> ideal_angle_of_attack() const

Returns the ideal angle of attack. The mean line offset curve must be canonical.

Angle<F> angle_of_zero_lift() const

Returns the angle of zero lift. The mean line offset curve must be canonical.

F pitching_moment_coefficient() const

Returns the pitching moment coefficient about ζ = 1
4
. The mean line offset

curve must be canonical.

When the default constructor is used, the mean line offset curve will be defined to
be canonical with no cambre. This paradigm extends to the classes derived from
MeanLineOffset<F>.

Due to its implementation as a handle to an underlying representation (inherited
from the base class CurveLib::Curve<1U,F,F>), the member functions of the class
MeanLineOffset<F> are inherently polymorphic, even though they are not virtual.
Therefore, for example, the code

using namespace Afoil;

MeanLineOffset<double> afoil = NACA4DigitMeanLineOffset(0.4,0.03);

double alpha_i = afoil.ideal_lift_coefficient();

will cause alpha_i to be evaluated using the functions appropriate to a NACA 4-digit
mean line (see Section 6.1.1.2), with a result which has machine accuracy.

6.1.1.1 Mean line offset curves constructed from piecewise polynomial splines

PPSplineMeanLineOffset<F> is a mean line offset curve which is defined using a
piecewise polynomial spline (see the description of the class Spline::PPSpline<F,F>
in Reference 4, Section 6). Several of the commonly used mean line offset curves can be
represented in this way. Moreover, the angle of zero lift, ideal angle of attack, design

DRDC Atlantic TM 2009-053 23

lift coefficient and the pitching moment can all be calculated exactly (according to
thin airfoil theory) for these mean lines: see Annex A.

PPSplineMeanLineOffset<F> is derived from the class MeanLineOffset<F> and has
the following public members as well as the default and copy constructors, virtual
destructor, assignment operator and members inherited from its base classes.

typedef Spline::PPSpline<F,F> SplineType

The type of the curve used to represent the mean line offset curve.

PPSplineMeanLineOffset(SplineType s)

Makes a mean line offset curve using the spline s.

void define(SplineType s)

Redefines the mean line offset curve using the spline s.

6.1.1.2 NACA 4-digit mean line offset curve

The mean line offset curves used by the NACA 4-digit series of airfoils (see Abbot
and von Doenhoff [2], Chapter 6.4) have the form:

m(ζ) =

cζ(2ζm − ζ)

ζ2
m

for ζ ∈ [0, ζm]

c(1− ζ)(1− 2ζm + ζ)

(1− ζm)2
for ζ ∈ [ζm, 1]

(36)

A typical value for ζm is 0.4.

The ideal angle of attack, the angle of zero lift and the design lift coefficient are given
by

αi =
c(1− 2ζm)

2πζ2
m(1− ζm)2

[
4
√

ζm(1− ζm)− 2πζ2
m − 2(1− 2ζm) arccos(1− 2ζm)

]
(37)

α0 = − c

4πζ2
m(1− ζm)2

[
4(1− 2ζm)(2ζm − 3)

√
ζm(1− ζm)

− 2(4ζm − 3)
(
πζ2

m + (1− 2ζm) arccos(1− 2ζm)
)]

(38)

CLi =
c

2ζ2
m(1− ζm)2

[
−4(1− 2ζm)2

√
ζm(1− ζm)

+ 2πζ2
m + 2(1− 2ζm) arccos(1− 2ζm)

]
(39)

Cm =
c

12ζ2
m(1− ζm)2

[
2(4ζ2

m − 1)(4ζm − 3)
√

ζm(1− ζm)

− 3ζ2
mπ − 3(1− 2ζm) arccos(1− 2ζm))

]
(40)

24 DRDC Atlantic TM 2009-053

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

α 0
 (

de
gr

ee
s)

ζm

Angle of Zero Lift

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

α i
 (

de
gr

ee
s)

ζm

Ideal Angle of Attack

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
Li

ζm

Design Lift Coefficient

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
m

ζm

Pitching Moment Coefficient

Figure 3: The lift characteristics as a function of ζm for a NACA
4-digit airfoil with cambre c = 0.01.

Figure 3 plots α0, αi, CLi and Cm as a function of ζm for a NACA 4-digit airfoil with
cambre equal to 1% of chord.

The class NACA4DigitMeanLineOffset<F> represents NACA 4-digit mean line offset
curves. It is derived from the base class PPSplineMeanLineOffset<F> and has the
following has the following public members as well as the default and copy construc-
tors, virtual destructor, assignment operator and members inherited from its base
classes.

NACA4DigitMeanLineOffset(F zetam, F c)

Makes a NACA 4-digit mean line offset curve for an airfoil having cambre c.
The maximum ordinate occurs when ζ is zetam.

NACA4DigitMeanLineOffset(const Str &desig)

Makes a NACA 4-digit mean line offset curve having designation desig. The
string desig has two digits, the first giving the cambre in percent of the chord,
the second giving the location of the maximum ordinate in tenths of the chord.
For example, a designation of "34" indicates that c = 0.03 and ζm = 0.4.

DRDC Atlantic TM 2009-053 25

void set_cambre(F c)
Redefines the mean line offset curve to have cambre c.

void set_zeta_at_maximum_ordinate(F zetam)
Sets the location of the maximum ordinate to zetam.

void define(F zetam, F c)

Redefine the mean line offset curve to have maximum ordinate at zetam and
cambre c.

6.1.1.3 NACA 5-digit mean line offset curve

The mean line offset curves used by the NACA 5-digit series of airfoils (see Abbot
and von Doenhoff [2], Chapter 6.5) have the form:

m(ζ) =

{
1
6
k1ζ
(
ζ2 − 3ζjζ + ζ2

j (3− ζj)
)

for ζ ∈ [0, ζj]

1
6
k1ζ

3
j (1− ζ) for ζ ∈ [ζj, 1]

(41)

The location of the maximum ordinate occurs forward of ζj at ζm = ζj−
√

ζ3
j /3 which

can be inverted to give ζj as a function of ζm,

ζj = 1− 2
√

1− 2ζm sin

(
π/6− 1

3
arctan

(
ζm

√
ζm(4− 9ζm)

2− 6ζm + 3ζ2
m

))
(42)

Since ζj cannot exceed 1, ζm cannot exceed 1− 1/
√

3 ≈ 0.42265.

The cambre is

c =
k1ζ

3
j

6

1− ζj +
2
√

3ζ3
j

9

 (43)

and the ideal angle of attack, the angle of zero lift and the design lift coefficient are
given by

αi =
k1

48π

[
−18(1− 2ζj)

√
ζj(1− ζj)− 8πζ3

j

+ (24ζ2
j − 24ζj + 9) arccos(1− 2ζj)

]
(44)

α0 = − k1

48π

[
(16ζ2

j − 52ζj + 30)
√

ζj(1− ζj) + 8πζ3
j

− (24ζ2
j − 36ζj + 15) arccos(1− 2ζj)

]
(45)

CLi =
k1

12

[
(8ζ2

j − 8ζj + 6)
√

ζj(1− ζj)− 3(1− 2ζj) arccos(1− 2ζj)
]

(46)

26 DRDC Atlantic TM 2009-053

-1

-0.8

-0.6

-0.4

-0.2

0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

α 0
 (

de
gr

ee
s)

ζm

Angle of Zero Lift

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

α i
 (

de
gr

ee
s)

ζm

Ideal Angle of Attack

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

C
Li

ζm

Design Lift Coefficient

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

C
m

ζm

Pitching Moment Coefficient

Figure 4: The lift characteristics as a function of ζm for a NACA
5-digit airfoil with cambre c = 0.01.

Cm = − k1

192

[
(32ζ3

j − 16ζ2
j − 28ζj + 30)

√
ζj(1− ζj)

+ (24ζj − 15) arccos(1− 2ζj)
]

(47)

Figure 4 plots α0, αi, CLi and Cm as a function of ζm for a NACA 5-digit airfoil with
cambre equal to 1% of chord.

The class NACA5DigitMeanLineOffset<F> represents NACA 5-digit mean line offset
curves. It is derived from the base class PPSplineMeanLineOffset<F> and has the
following has the following public members as well as the default and copy construc-
tors, virtual destructor, assignment operator and members inherited from its base
classes.

NACA5DigitMeanLineOffset(F zetam, F c)

Makes a NACA 5-digit mean line offset curve for an airfoil having cambre c.
The maximum ordinate occurs when ζ is zetam. The value of zetam must not
exceed 1− 1/

√
3 ≈ 0.42265.

DRDC Atlantic TM 2009-053 27

NACA5DigitMeanLineOffset(const Str &desig)

Makes a NACA 5-digit mean line offset curve having designation desig. The
string desig has three digits: three-halves the first gives the design lift coeffi-
cient in tenths; the second and third together give the location of the maximum
mean line ordinate in twentieths of the chord. For example, the designation
"230" indicates that CLi = 0.3 and ζm = 0.15.

void set_cambre(F c)
Redefines the mean line offset curve to have cambre c.

void set_zeta_at_maximum_ordinate(F zetam)
Sets the location of the maximum ordinate to zetam. The value of zetam must
not exceed 1− 1/

√
3 ≈ 0.42265.

F k1() const
Returns the value of k1.

F zeta_at_join() const

Returns the value of ζj: the point where the cubic and linear curve are joined.

6.1.1.4 Constant load mean line offset curve

According to thin airfoil theory, a mean line offset curve of the form

m(ζ) = −CLi

4π

[
(1− ζ) ln(1− ζ) + ζ ln ζ

]
(48)

will produce a constant load distribution along the length of the airfoil when the
angle of attack is zero. This type of mean line offset curve is used by the NACA
16-series airfoils. Since this mean line offset curve is symmetric about ζ = 1

2
, its ideal

angle of attack is zero, its angle of zero lift is α0 = −CLi/2π and its pitching moment
coefficient is Cm = −CLi/4. The maximum ordinate occurs when ζ = 1

2
and has the

value c = CLi ln 2/4π.

Similarly, a mean line offset curve of the form

m(ζ) =
CLi

2π(a + 1)

{
1

4(1− a)

[
(a− ζ)2 ln

(
(a− ζ)2

)
− (1− ζ)2 ln

(
(1− ζ)2

)
+ (1− ζ)2 − (a− ζ)2

]
− ζ ln ζ + g − hζ

}
(49)

with

g = −1

4

(
a + 1 +

2a2 ln a

1− a

)
; h =

(1− a)
(
2 ln(1− a)− 1

)
4

+ g (50)

28 DRDC Atlantic TM 2009-053

0

0.005

0.01

0.015

0.02

0.025

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y

ζ

Linear Load Mean Lines

a = 0.0
a = 0.2
a = 0.4
a = 0.6
a = 0.8
a = 1.0

Figure 5: Constant load mean line offset curves with CL = 0.3 for six values of a.

will generate a load distribution which is constant for 0 ≤ ζ ≤ a and then decreases
linearly to zero at the trailing edge; in the limit a → 1, we get the constant load
mean line of Equation (48). This type of mean line offset curve is used by the NACA
6-series airfoils. Its ideal angle of attack and angle of zero lift are

αi =
CLih

2π(a + 1)
; α0 =

CLi

2π

(
h

a + 1
− 1

)
(51)

Figure 5 plots the mean line offset curves of Equation (49) for six values of a; the
curve with a = 1 is equivalent to the mean line of Equation (48).

The theoretical curves of Equations (48) and (49) have the problem that the slope is
infinite at the leading edges and also at the trailing edge for the case of Equation (48);
all higher derivatives are infinite at both leading and trailing edges. Abbot and
von Doenhoff suggest alleviating this problem at the leading edge by generating the
airfoil offsets using a circle of prescribed radius of curvature whose centre is on the line
through the leading edge and has the slope of the mean line at ζ = 0.005. In the same
spirit, we avoid the problems at the leading and trailing edges by using a quadratic
curve when ζ < 0.005 or ζ > 0.995. The quadratic coefficients are chosen to make the
mean line offset curve continuous and smooth. For the case when a = 0 the deviation
of the quadratic curves from the exact curves does not exceed 6.37× 10−5 times the
design lift coefficient, the maximum deviation occurring at about 0.1% of the chord.
The deviation of the airfoil shape from the exact shape will be even smaller.

ConstLoadMeanLineOffset is a class which represents the mean line offset curves
described by Equations (48) and (49). It is derived from the class MeanLineOffset<F>

DRDC Atlantic TM 2009-053 29

and has the following members as well as the default and copy constructors, virtual
destructor, assignment operator and members inherited from its base classes.

ConstLoadMeanLineOffset(F cl, F a)

Makes a mean line offset curve for an airfoil having lift coefficient cl with
constant load for 0 ≤ ζ ≤ a. If a exceeds 1, m(ζ) will have the form given by
Equation (48) with the adjustments at the leading and trailing edges described
above. Otherwise m(ζ) will be of the form given by Equation (49) with similar
adjustments at the leading and trailing edges. If a is negative it will be set to
zero.

void set_cambre(F c)
Redefines the mean line offset curve to have cambre c.

F cambre() const
Returns the cambre.

F design_lift_coefficient() const

Returns the design lift coefficient, CLi.

Angle<F> ideal_angle_of_attack() const

Returns the ideal angle of attack.

F get_a() const

Returns the end of the region of constant loading.

6.1.1.5 Mean line offset curves which are circular arcs

An ArcMeanLineOffset<F> represents an airfoil mean line curve which is an arc of a
circle.

m(ζ) = −y +
√

y2 + ζ(1− ζ); y =
1

8c
− c

2
(52)

where c is the cambre. Because the mean line offset curve is symmetric about ζ = 1
2
,

we have
αi = 0; CLi = −2πα0; Cm =

πα0

2
(53)

The angle of zero lift, α0, can be approximated using

α0 = −2c
(
1 + 2c2 + 4c4 + 12c6 + 36c8 + o(c10)

)
(54)

ArcMeanLineOffset<F> has the following members as well as the default and copy
constructors, virtual destructor, assignment operator and members inherited from its
base classes.

30 DRDC Atlantic TM 2009-053

ArcMeanLineOffset(F c)
Makes a circular arc mean line offset curve with cambre c.

void set_cambre(F c)
Redefines the mean line offset curve to have cambre c.

6.1.1.6 Mean line offset curves derived from offsets

An OffsetMeanLineOffset<F> represents a mean line offset curve generated by splin-
ing a sequence of offsets: i.e. a sequence of (ζ, y) pairs. It is derived from the base
class PPSplineMeanLineOffset<F>.

The angle of zero lift, ideal angle of attack, design lift coefficient and the pitching
moment can all be calculated exactly (according to thin airfoil theory) for these mean
line offset curves.

OffsetMeanLineOffset<F> has the following members as well as the default and copy
constructors, virtual destructor, assignment operator and members inherited from its
base classes.

typedef typename Spline::CubicSpline<F>::ValArray ValArray

The type of the sequence of offset values.

OffsetMeanLineOffset(const Spline::KnotSeq<F> &zeta_vals,

const ValArray &y_vals)

Makes a mean line offset curve for an airfoil by splining the offsets given by
zeta_vals and y_vals. The lengths of zeta_vals and y_vals must be the
same.

void define(const Spline::KnotSeq<F> &zeta_vals,

const ValArray &y_vals)

Redefines the mean line offset curve by splining the offsets given by zeta_vals

and y_vals. The lengths of zeta_vals and y_vals must be the same.

6.1.2 Classes to represent thickness curves

The class ThicknessCurve<F> represents an airfoil thickness curve. It is a curve,
t(ζ), which returns the value of the half-thickness of the airfoil. The value of the
thickness curve at ζ = 0 must be zero. If t(1) > 0, the thickness curve is said to
have an open trailing edge. If t(1) = 0 and t′(1) is finite, the trailing edge is said to
be sharp. If t′(ζ) approaches infinity as ζ approaches 1, the trailing edge is blunt.
ThicknessCurve<F> allows three different methods for closing thickness curves which

DRDC Atlantic TM 2009-053 31

are open, two which make a sharp trailing edge and one which makes a blunt trailing
edge.

ThicknessCurve<F> is derived from the base class CurveLib::Curve<1U,F,F> and
has the following members as well as the default and copy constructors, virtual de-
structor, assignment operator and members inherited from its base classes.

ThicknessCurve(CurveLib::Curve<1U,F,F> crv, bool blunt = false)

Makes an airfoil thickness curve using crv. The value crv(0) must equal zero;
if not a ProgError is thrown. If blunt is true, the thickness curve is assumed to
have a blunt trailing edge (it is not possible to determine this from crv alone);
in this case crv(1) must equal zero; if not a ProgError is thrown.

bool is_closed() const
Returns true if the thickness curve is closed at the trailing edge: i.e. if its value
at ζ = 1 is zero.

bool is_blunt() const
Returns true if the thickness curve is blunt at the trailing edge: i.e. its derivative
goes to infinity as one approaches the trailing edge. If the trailing edge is open,
it is not blunt.

void close_trailing_edge_by_extension()

Ensures that the thickness curve has a closed trailing edge by extending the
range of the thickness curve until it is zero. The parameter ζ is then scaled so
that it is 1 at the new trailing edge location. The new thickness curve is defined
by:

tnew(ζ) =

{
t(η) for η ≤ 1
t(1)− t′(1)(1− η) for η ≥ 1

(55)

η = ζ

(
1− t(1)

t′(1)

)
(56)

Due to the scaling of ζ, the thickness curve is modified throughout its length.
The new trailing edge is sharp. This form of closure is illustrated in Figure 6.

If the trailing edge is already closed, the thickness curve is not changed.

An Error will be throw if the derivative of the thickness curve is not strictly
negative at ζ = 1.

void close_trailing_edge_with_parabola(F zeta0 = F(1))

Ensures that the thickness curve has a closed trailing edge by adding a parabolic
curve to it starting at ζ = ζ0; does nothing if the trailing edge is already closed.

32 DRDC Atlantic TM 2009-053

η = 1 ζ = 1

Original Thickness

Extended Thickness

Figure 6: Trailing edge closure by extension.

The value of ζ0 is given by zeta0. If it is outside the range [0,1), ζ0 will be set
to the location of maximum thickness.

The parabola is chosen so that the airfoil is smooth (i.e. the parabola has a
derivative of zero at ζ = ζ0).

tnew(ζ) =

 t(ζ) for ζ ≤ ζ0

t(ζ)− t(1)(ζ − ζ0)
2

(1− ζ0)2
for ζ ≥ ζ0

(57)

The new trailing edge is sharp. This form of closure is illustrated in Figure 7.

void make_trailing_edge_blunt(F radius)

If the thickness curve has an open trailing edge, closes it such that it is blunt;
does nothing if the trailing edge is already closed. The approximate radius of
curvature of the trailing edge is given by radius; it must be strictly positive.

The thickness curve is closed using a quarter elliptic arc with half width t(1)
and specified radius of curvature, r, at the trailing edge. The half-length of the
ellipse is then t(1)2/r. The new thickness curve is:

tnew(ζ) =

t(ζ) for ζ ≤ ζ0

t(ζ)− t(1) +
r
√

(1− 2ζ0 + ζ)(1− ζ)

t(1)
for ζ ≥ ζ0

(58)

ζ0 = 1− t(1)2

r
(59)

The thickness curve is only modified in a small region close to the trailing edge.
This form of closure is illustrated in Figure 8.

DRDC Atlantic TM 2009-053 33

ζ = 1ζ = ζ0

Original Thickness

New Thickness

Figure 7: Trailing edge closure with a
parabola.

ζ = 1ζ = ζ0

Original Thickness

New Thickness

r

Figure 8: Blunt trailing edge closure.

6.1.2.1 NACA 4-digit thickness curves

The NACA 4-digit and 5-digit series airfoils use the following thickness curve:

t(ζ) =
tmax

0.2

[
0.29690

√
ζ − 0.12600ζ − 0.35160ζ2 + 0.28430ζ3 − 0.10150ζ4

]
(60)

where tmax is the maximum thickness. The class NACA4DigitThicknessCurve<F>

represents this curve. It is derived from the class ThicknessCurve<F> and has the
following members as well as the default and copy constructors, virtual destructor,
assignment operator and members inherited from its base classes.

NACA4DigitThicknessCurve(F tmax)

Makes the thickness curve used by the NACA 4-digit and 5-digit series of airfoils.
The maximum thickness will be tmax.

NACA4DigitThicknessCurve(const Str &desig)

Makes the thickness curve used by the NACA 4-digit and 5-digit series of airfoils
with thickness determined by the designation desig, a two-digit string giving
the maximum thickness in percent of chord: for example, if desig is "20", the
maximum thickness will be 20% of the chord.

void set_thickness(F tmax)
Changes the maximum thickness to tmax.

6.1.2.2 Thickness curve derived from offsets

An OffsetThicknessCurve<F> represents an airfoil thickness curve that is specified
using a set of offsets and the radius of curvature at the leading edge. The offsets are
given in terms of the chord fraction ζ and the thickness relative to the chord. The

34 DRDC Atlantic TM 2009-053

curve is of the form: y =
√

2rζ + cubic spline. This ensures that the geometry at
the leading edge is accurate. Thickness curves of this type are used by the NACA
6-series airfoils.

The class OffsetThicknessCurve<F> represents thickness curves specified using off-
sets and a leading edge curvature. It is derived from ThicknessCurve<1U,F,F> and
has the following constructor as well as the default and copy constructors, virtual
destructor, assignment operator and members inherited from its base classes.

OffsetThicknessCurve(F r, unsigned n, const F *zeta, const F *yt)

Makes an airfoil thickness curve having leading edge radius r (relative to chord)
and n offsets in zeta and yt. The values in zeta must be positive and strictly
increasing. The last value of zeta must be 1.0. The values in yt must be
positive except that the value corresponding to ζ = 0 must be zero and the
value corresponding to ζ = 1 may be 0.

6.1.3 NACA airfoils

The National Advisory Committee for Aeronautics (NACA) has designed several
series of airfoils that have been used for decades in many applications. The Airfoil
Library currently implements NACA 4-digit, 5-digit, 16-series and 6-series airfoils [2].
They may all be represented using the class NACAAirfoil<F>. Since the NACA airfoils
are all defined using a thickness curve and a mean line offset curve, NACAAirfoil<F>
is derived from the class ThickDistAirfoil<F>. All NACA airfoils are canonical.

NACAAirfoil<F> has the following members as well as the default and copy construc-
tors, virtual destructor, assignment operator and members inherited from its base
classes.

NACAAirfoil(const Str &desig)

Creates a NACA airfoil with designation desig. If the designation is not known,
an UnknownNACADesignation exception is thrown (it is derived from Error).
The following designations are understood where d stands for any digit:

dddd: a 4-digit series airfoil. The first digit gives the cambre in percent of the
chord, the second gives the location of the maximum ordinate in tenths
of the chord and the last two give the maximum thickness in percent of
chord. For example, the designation 2415 indicates c = 0.02, ζm = 0.4 and
t = 0.15.

ddddd: a 5-digit series airfoil. Three-halves the first digit gives the design lift
coefficient in tenths; the second and third digits together give the location
of the maximum mean line ordinate in twentieths of the chord; the last

DRDC Atlantic TM 2009-053 35

two digits give the maximum thickness in percent of chord. For example,
the designation "23012" indicates that CLi = 0.3, ζm = 0.15 and t = 0.12.

16-ddd: a 16-series airfoil. The first digit following the hyphen gives the design
lift coefficient in tenths, and the last two digits give the maximum thickness
in percent of chord. For example, the designation "16-212" indicates that
CLi = 0.2 and t = 0.12.

6n_d-ddd a = d.d: a 6-series airfoil. Here n is one of the digits 3, 4, 5 or 6;
it gives the location of the in tenths of chord downstream of the leading
edge of the minimum pressure for the zero cambre airfoil at zero lift.

The underscore denotes a subscript; thus, for example, 63_3-018 corre-
sponds to the airfoil 633–018. The subscripted digit gives the range of
lift coefficient in tenths above and below the design lift coefficient in which
favourable pressure gradients exist on both sides of the airfoil. It is omitted
if the thickness is less than 12% of the chord length.

The first digit after the hyphen and the characters beginning with a serve
to specify the mean line offset curve which is of the constant load type (see
Section 6.1.1.4). The digit after the hyphen gives the design lift coefficient
in tenths, while the characters beginning with a specify the value of a
in Equation (49); the spaces around the equals sign are optional. If the
characters beginning with a are omitted, Equation (48) will be used to
define the mean line offset curve.

The thickness curves of the 6-series airfoils are not derived from simple
formulae as are the 4 and 5-digit airfoils. Nor can one thickness curve be
derived from another simply by scaling the curves with maximum thick-
ness. Instead, the thickness curves are obtained from data tabulated by
Abbot and von Doenhoff [2]. The following airfoils can be represented (the
string in brackets is the corresponding value of desig):

6n–d06 (6n-d06)
6n–d08 (6n-d08)
6n–d09 (6n-d09)
6n–d10 (6n-d10)
6n1–d12 (6n_1-d12)
6n2–d15 (6n_2-d15)
6n3–d18 (6n_3-d18)
6n4–d21 (6n_4-d21)

An exception is that there is no representation for 63–d08. The last two
digits give the maximum thickness in percent of chord.

For example, if desig is "66_4-221 a = 0.8", then the NACA designa-
tion of the airfoil is 664–221 a = 0.5. It has a thickness of 0.21 and mean
line offset curve defined by Equation (49) with CLi = 0.2 and a = 0.5.

36 DRDC Atlantic TM 2009-053

6n_(ddd)-ddd a = d.d: a 6-series airfoil. As with the 6-series designation of
the form 6n_d-ddd a = d.d, the digit n can be one of 3, 4, 5 or 6, the
underscore denotes a subscript and the first digit after the hyphen and the
characters beginning with a specify the mean line. The last two digits give
the maximum thickness in percent of chord. The thickness distribution is
scaled from the thickness distribution specified by the digits in brackets.
Let these digits be (pqr). Then the thickness curve is obtained by scaling
the thickness curve of the airfoil 6n_p-0qr. If there are only two digits
in brackets, it is assumed that p is missing and the thickness curve to be
scaled is obtained from the airfoil 6n-0qr. From the restrictions on the
airfoils with designation of the form 6n_d-ddd, the digits in brackets must
be one of 06, 08, 09, 10, 112, 215, 318 or 421 except that 08 is not allowed
if n is 3.

For example, if desig is "65_(318)-217 a = 0.5", then the NACA des-
ignation of the airfoil is 65(318)–217 a = 0.5. This airfoil has a thickness
curve obtained from the airfoil with designation 653–018 but scaled so that
its maximum thickness is 0.17.

void define(const Str &desig)

Redefines the airfoil to be a NACA airfoil with designation desig. If the des-
ignation is not known, an UnknownNACADesignation exception is thrown.

void define_4_digit(F t, F zetam, F c)

Defines the airfoil to be a member of the 4-digit NACA series having thickness
t and cambre c. The maximum mean line ordinate occurs at ζ equal to zetam.

A NACA4DigitThicknessCurve<F> is used to represent the thickness curve: see
Section 6.1.2.1. A NACA4DigitMeanLineOffset<F> is used to represent the
mean line offset curve: see Section 6.1.1.2.

void define_5_digit(F t, F zetam, F c)

Defines the airfoil to be a member of the 5-digit NACA series having thickness
t and cambre c. The maximum mean line ordinate occurs at ζ equal to zetam.

The thickness curve is the same as for the 4-digit series (see Section 6.1.2.1).
The mean line offset curve is represented by a NACA5DigitMeanLineOffset<F>:
see Section 6.1.1.3.

void define_16_series(F t, F cl)

Defines the airfoil to be a member of the NACA 16-series having thickness t

(fraction of chord) and design lift coefficient cl.

The thickness curves for the 16-series airfoils are directly proportional to the
thickness. The curve used here is derived by splining the offsets given by Abbot

DRDC Atlantic TM 2009-053 37

and von Doenhoff for the 16-series airfoil with thickness of 21% of chord, then
scaling it according to the value of t.

The mean line offset curve for a 16-series airfoil is of the constant load type
(Equation (48)) and is represented by a ConstLoadMeanLineOffset<F>.

void define_6_series(F t, F xpmin, F low_drag, F cl, F a)

Defines the airfoil to be a member of the NACA 6-series having thickness t (frac-
tion of chord), low drag range low_drag, minimum pressure at xminp (fraction
of chord), design lift coefficient cl, and constant loading for ζ less than a.

The thickness curves for the 6-series airfoils are calculated by splining the offsets
given by Abbot and von Doenhoff. This limits the values of xpmin to 0.3, 0.4, 0.5
and 0.6, and low_drag and t to the following pairs: (low_drag, t) = (0, 0.06),
(0,0.08), (0,0.09), (0,0.1), (0.1,0.12), (0.2,0.15), (0.3,0.18), (0.4,0.21) with the
exception that (0,0.08) is not allowed when xpmin is 0.3.

The mean line offset curve for a 6-series airfoil is of the constant load type with
a linear drop off to the trailing edge (Equation (49)) and is represented by a
ConstLoadMeanLineOffset<F>.

The ideal angle of attack, the angle of zero lift and the design lift coefficient are
calculated exactly for all NACA airfoils. The pitching moment about one quarter
chord is calculated exactly for 4-digit, 5-digit and 16-series airfoils; for the 6-series
airfoils it will be approximate.

6.1.4 The DTMB modification of the NACA 66 airfoil

An airfoil that has often been used for propeller sections is a modification of the
NACA 66 airfoil designed at the David Taylor Model Basin (DTMB). The modifica-
tions thicken the trailing edge for ease of manufacture and fair the nose to eliminate
a bump in the pressure distribution that occurs on the NACA 66 airfoils. In addi-
tion, airfoils of different thicknesses are obtained simply by scaling the airfoil with
thickness equal to 6% of chord (the NACA 66 airfoils have slightly different thickness
curves for each thickness). A constant load mean line offset curve with a = 0.8 is
used. The complete geometry of the airfoil is described by Brockett [5].

The class NACA66DTMBmod<F> implements the DTMB modification of the NACA 66
airfoil. It is derived from the base class ThickDistAirfoil<F> and has the following
members as well as the default and copy constructors, virtual destructor, assignment
operator and members inherited from its base classes.

NACA66DTMBmodAirfoil(F t, F cl)

Makes an airfoil having thickness t (relative to chord length) and design lift
coefficient cl.

38 DRDC Atlantic TM 2009-053

void define(F t, F cl)

Redefines the airfoil to have thickness t (relative to chord length) and design
lift coefficient cl.

void set_cambre(F c)
Redefines the airfoil to have cambre c (relative to chord length).

F cambre() const
Returns the cambre of the airfoil.

F design_lift_coefficient() const

Returns the design lift coefficient for the airfoil.

Angle<F> ideal_angle_of_attack() const

Returns the ideal angle of attack for the airfoil. The class Angle<F> is described
in Reference 1, Annex E.

7 Defining airfoils from files

Airfoils can be defined by reading records from a file in OFFSRF format [6]. The class
AirfoilReader<F> provides the interface between the file and the airfoil created. Its
template argument, F, is the type of the floating point numbers used for the airfoil;
it will normally be float or double.

For example, to define an airfoil from data in the file afoil.dat, one could use the
following code:

// Open an OFFSRF input stream

Offsrf::IFStream in("afoil.dat");

if (!in) throw Error("Could not open file afoil.dat");

// Read the file

AirfoilReader<double> reader;

in >> reader;

if (!in) throw Error("Error in file afoil.dat");

// Get the airfoil

Airfoil<F> afoil = reader.airfoil;

if (!afoil.is_defined()) {

throw Error("No airfoil was specified in the file afoil.dat");

}

The class Offsrf::IFStream is simply a std::istream adapted for use by the
OFFSRF classes.

DRDC Atlantic TM 2009-053 39

AirfoilReader<F> also allows a name to be given to the airfoil. The name can be
retrieved from its public member name:

std::string aname = AirfoilReader<F>::name;

AirfoilReader<F> recognizes records with the following names: CLOSE TRAILING

EDGE, COMMENT, INCLUDE, JOUKOWSKI, NACA, NACA 66 DTMB(mod), NAME, OFFSETS,
and THICKNESS DISTRIBUTION AIRFOIL. The COMMENT record is a standard OFFSRF
record which simply writes its contents to stdout. The INCLUDE record is also a stan-
dard OFFSRF record. It directs input to another file; the content of the record is
interpreted as the name of the file: see Reference 6. The remaining records are de-
scribed in the following sections. Each record is optional but there must be one of
JOUKOWSKI, NACA, OFFSETS or THICKNESS DISTRIBUTION AIRFOIL or else the airfoil
will remain undefined.

7.1 The CLOSE TRAILING EDGE record

The CLOSE TRAILING EDGE record has no data: i.e. it simply takes the form:

{CLOSE TRAILING EDGE}

When it is present, the airfoil will be closed. If the trailing edge is already closed,
the presence of this record will cause no change. The trailing edge is closed us-
ing the function Airfoil<double>::close_trailing_edge() (see Section 4) un-
less a BLUNT TRAILING EDGE record is also present, in which case the function
Airfoil<double>::make_trailing_edge_blunt(F radius) is used.

7.2 BLUNT TRAILING EDGE

Presence of a BLUNT TRAILING EDGE causes the trailing edge to be closed using the
function Airfoil<double>::make_trailing_edge_blunt(F radius). If the trail-
ing edge is already closed, this record will cause no change. The record has the
form

{BLUNT TRAILING EDGE: α }

where the value α is used to specify the radius of curvature at the trailing edge.
Let the distance separating the points at the trailing edge be ∆. Then the radius
of curvature will be ∆/2α and the change in the airfoil curve extends roughly 1

2
α∆

upstream of the trailing edge. If α = 1, the trailing edge closure will roughly be a
semi-circle; larger values of α make the trailing edge sharper, smaller values more
blunt.

40 DRDC Atlantic TM 2009-053

7.3 The JOUKOWSKI record

This record defines a Joukowski airfoil. It has the following format:

{JOUKOWSKI: thickness cambre
{FINITE TE DERIVATIVE} ! optional

}

The value of the cambre can be omitted; in that case the cambre will be zero.

If the FINITE TE DERIVATIVE record is present, then the ξ-parameterization defined
by Equation (17) is used to ensure that the first derivative of the airfoil ξ-curve will
be finite at the trailing edge; otherwise the parameterization defined by Equation (16)
is used and the first derivative at the trailing edge will be zero.

The airfoil is given the name Joukowski t=thickness c=cambre. For example, the
record

{JOUKOWSKI: 0.06 0.02 }

results in an airfoil with the name Joukowski t=0.06 c=0.02.

The airfoil and its name replace any airfoil or name created by records occurring
earlier in the file.

7.4 The NACA record

This record defines a NACA airfoil from a designation. It has the following format:

{NACA: designation }

where designation is any of the designations recognized by the NACAAirfoil<F> con-
structor: see Section 6.1.3. Leading and trailing whitespace is stripped from the
designation before being passed to the constructor.

The airfoil is given the name NACA designation. For example, the record

{NACA: 63_3-418 a=0.7 }

results in an airfoil with the name NACA 63_3-418 a=0.7.

The airfoil and its name replace any airfoil or name created by records occurring
earlier in the file.

DRDC Atlantic TM 2009-053 41

7.5 The NACA 66 DTMB(mod) record

This record defines a DTMB modification of the NACA 66 airfoil from specified values
for the thickness and cambre. It has the following format:

{NACA 66 DTMB(mod): thickness cambre }

The value of the cambre can be omitted in which case it will be set to zero.

The airfoil is given the name NACA 666 DTMB(mod) t=thickness c=cambre. For ex-
ample, the record

{NACA 66 DTMB(mod): 0.06 0.02 }

results in an airfoil with the name NACA 66 DTMB(mod) t=0.06 c=0.02.

The airfoil and its name replace any airfoil or name created by records occurring
earlier in the file.

7.6 The NAME record

The NAME record is used to specify a name for the airfoil. It has the following format:

{NAME: name }

Leading and trailing whitespace will be stripped from the name. The name replaces
any name created by records occurring earlier in the file.

7.7 The OFFSETS record

This record defines an airfoil from a set of (x, y) offsets. It has the following format:

{OFFSETS

x0 y0

· · ·
xn yn

{LEADING EDGE INDEX: ile } ! optional

{BLUNT TRAILING EDGE} ! optional

}OFFSETS

The offsets must be ordered with increasing ξ: i.e. they start at the trailing edge,
proceed to the leading edge along the pressure side, then back to the trailing edge
along the suction side.

42 DRDC Atlantic TM 2009-053

One of the offset points must lie at the leading edge. The index ile marks which point
this is (note that the numbering starts at zero). If this record is not present, it is
assumed that the leading edge is at (0, 0); the offset point with that value is found
and the value of ile set accordingly; if no offset with that value is present, an Error

is thrown.

If the BLUNT TRAILING EDGE record is present, the trailing edge will be made blunt.
The method for doing this depends on whether the first and last offset points are the
same. If they are the same, the offsets are splined using a periodic cubic spline (see
Reference 4, Section 8.1.3); the trailing edge curvature cannot be controlled. If the
first and last offset points differ, an ordinary cubic spline is used and then the airfoil
is closed using the algorithm described in Annex B.

Note that a BLUNT TRAILING EDGE record can be placed either inside or outside the
OFFSETS record. If the first and last offset points differ, the resulting airfoil will be
the same. However, if the first and last offset points are the same, the two airfoils will
differ. When it is outside the OFFSETS record, the airfoil surface will be generated
using an ordinary spline; since the resulting airfoil is closed, the BLUNT TRAILING

EDGE will do nothing. However, when it is inside the OFFSETS record, a periodic
spline is used and the airfoil trailing edge will be blunt. This behaviour is illustrated
in Figure 9.

The airfoil replaces any airfoil created by records occurring earlier in the file.

7.8 The THICKNESS DISTRIBUTION AIRFOIL record

The THICKNESS DISTRIBUTION AIRFOIL record defines a thickness distribution airfoil
(a ThickDistAirfoil<F>). It consists solely of sub-records whose names can be any
of the records recognized by ThickDistAirfoilreader<F> (see Section 7.9):

{THICKNESS DISTRIBUTION AIRFOIL

Any record recognized by ThickDistAirfoilReader<F>

}THICKNESS DISTRIBUTION AIRFOIL

The airfoil replaces any airfoil created by records occurring earlier in the file.

7.9 Defining thickness distribution airfoils from files

Because of the importance of thickness distribution airfoils, a special reader class is
available for defining a ThickDistAirfoil<F> (see Section 6.1) from a file. It can be
used in exactly the same way as AirfoilReader<F> but in place of an Airfoil<F>

it contains a ThickDistAirfoil<F>. For example, to define a thickness distribution
airfoil from data in the file afoil.dat, one could use the following code:

DRDC Atlantic TM 2009-053 43

{OFFSETS

1.00 0.0

0.75 -0.07

0.50 -0.1

0.25 -0.1

0.10 -0.07

0.00 0.0

0.10 0.07

0.25 0.1

0.50 0.1

0.75 0.07

1.00 0.0

{BLUNT TRAILING EDGE}

}OFFSETS

{OFFSETS

1.00 0.0

0.75 -0.07

0.50 -0.1

0.25 -0.1

0.10 -0.07

0.00 0.0

0.10 0.07

0.25 0.1

0.50 0.1

0.75 0.07

1.00 0.0

}OFFSETS

{BLUNT TRAILING EDGE}

Figure 9: The difference between airfoils generated with a BLUNT TRAILING EDGE

record inside (right) and outside (left) an OFFSETS record. The airfoil on the left
is generated using a periodic spline. The airfoil on the right is generated using an
ordinary spline; since it is closed, the BLUNT TRAILING EDGE record does nothing in
this case.

// Open an OFFSRF input stream

Offsrf::IFStream in("afoil.dat");

if (!in) throw Error("Could not open file afoil.dat");

// Read the file

ThickDistAirfoilReader<double> reader;

in >> reader;

if (!in) throw Error("Error in file afoil.dat");

// Get the airfoil

ThickDistAirfoil<F> afoil = reader.airfoil;

if (!afoil.is_defined()) {

throw Error("No airfoil was specified in the file afoil.dat");

}

One can now use the member functions specific to ThickDistAirfoil<F> which would
not be available if an AirfoilReader<F> had been used.

44 DRDC Atlantic TM 2009-053

In addition to the standard OFFSRF records COMMENT and INCLUDE (see Reference 6),
ThickDistAirfoilReader<F> recognizes the records NACA, NACA 66 DTMB(mod)
and NAME and treats them exactly as does AirfoilReader<F>. It also allows the
airfoil to be specified from a mean line and thickness curve using any records rec-
ognized by the classes MeanLineOffsetReader<F> and ThicknessCurveReader<F>

described in Sections 7.9.1 and 7.9.2.

7.9.1 A class for defining mean line offset curves from a file

The class MeanLineOffsetReader<F> can be used to define mean line offset curves
from a file in OFFSRF format. In addition to the standard OFFSRF records COMMENT
and INCLUDE (see Reference 6), MeanLineOffsetReader<F> recognizes records with
the following format:

{CONSTANT LOAD MEAN LINE: CLi a }

{MEAN LINE OFFSETS

ζ0 y0

· · ·
ζn yn

}MEAN LINE OFFSETS

{NACA 4-DIGIT MEAN LINE: c ζm }

{NACA 5-DIGIT MEAN LINE: c ζm }

{CIRCULAR ARC MEAN LINE: c }

The parameters CLi and a in the CONSTANT LOAD MEAN LINE record are used to define
a constant load mean line offset curve according to Equation (49). If a is not present,
the mean line offset curve defined by Equation (48) is used.

The parameters c and ζm are the cambre and the location of the maximum mean line
offset.

Only one of these records is necessary; if more than one is present, the last one is
used.

7.9.2 A class for defining thickness curves from a file

The class ThickCurveReader<F> can be used to define thickness curves from a file in
OFFSRF format. In addition to the standard OFFSRF records COMMENT and INCLUDE

(see Reference 6), ThickCurveReader<F> recognizes records with the following for-
mat:

DRDC Atlantic TM 2009-053 45

{NACA 4-DIGIT THICKNESS: thickness }

{THICKNESS OFFSETS

ζ0 y0

· · ·
ζn yn

}THICKNESS OFFSETS

{BLUNT TRAILING EDGE: α }

{CLOSE TRAILING EDGE: method }

The value α in the BLUNT TRAILING EDGE record is used to specify the radius of
curvature at the trailing edge. The radius of curvature will be t(1)/α where t(1) is
the value of the thickness curve at the trailing edge. The change in the airfoil curve
extends roughly αt(1) upstream of the trailing edge. If α = 1, the trailing edge closure
will roughly be a semi-circle.

The parameter method in the CLOSE TRAILING EDGE is optional. If present it should
be one of extension or parabola. If method is not present, the trailing edge is closed
using the default method (a parabola starting at the maximum thickness). If method
is parabola the ζ-value at which the parabola starts can be specified:

{CLOSE TRAILING EDGE: parabola ζ }

If the value ζ is not present the location of maximum thickness is used.

Only one of CLOSE TRAILING EDGE or BLUNT TRAILING EDGE is necessary; if more
than one is present, the last one is used. Similarly, only one of the records NACA

4-DIGIT THICKNESS or THICKNESS OFFSETS is necessary.

8 Defining an airfoil from the command line

For programs requiring the definition of a single airfoil, it is convenient to be able
to specify the airfoil using command line arguments. The function make_airfoil

provides a means for doing this.

Airfoil<double> make_airfoil(const std::vector<Str> &args, Str &name)

Parses the command line arguments given by args, then makes an airfoil. The
type Str is an alias for std::string. The first element of args is the program
name. The following command line arguments are recognized. Arguments in
square brackets are optional.

file
Specifies a file which will be read using an AirfoilReader<double>.

46 DRDC Atlantic TM 2009-053

-D t c
Makes a DTMB modified NACA 66 airfoil with thickness t and cambre c.

-j t c [te-flag]

Makes a Joukowski airfoil with thickness t and cambre c. If te-flag is 1,
the first derivative of the airfoil ξ-curve will be finite at the trailing edge.
Otherwise it will be zero. The default is te-flag = 0.

-NACA desig
Defines the airfoil from the NACA designation desig. See Section 6.1.3 for
a description of the format of desig.

-cte [method [arg]]

Closes the trailing edge if it is not already closed. The optional argument
method can be one of p (close using a parabola: see Section 6.1), e (close
by extension: see Section 6.1) or b (blunt closure). The methods e and
p should only be used in conjunction with the -NACA or -D options. If
method is p, the optional arg gives the value ζ0 at which the parabola
begins; if it is missing the parabola will start at the location of maximum
offset of the mean line. If method is b, the optional arg gives the value of
α for the closure where α = ∆/2r with ∆ equal to the separation of the
points at the trailing edge and r equal to the radius of curvature at the
trailing edge. If arg is missing, α is set to 1. If method is missing, the
default trailing edge closure is used. If the trailing edge is already closed,
this option does nothing.

If a name for the airfoil can be determined it is returned in name.

The following function is also provided for generating descriptions of the allowed
command line arguments.

void make_airfoil_usage(FormattedOStream &out)

Writes information on the allowed command line arguments for make_airfoil
to out. A FormattedOStream is an adapted output stream which allows the
output to be indented and automatically wrapped at a specified column. It is
described in more detail in Annex C.

Here is an example of the use of make_airfoil in a program that also defines com-
mand line options -h and -x. The option -h writes a message describing the usage
of the program to stdout, then exits the program.

#include "MakeAirfoil.h"

#include "Airfoil.h"

#include "FormattedOStream.h"

void usage()

DRDC Atlantic TM 2009-053 47

{

FormattedOStream out(std::cout);

out << "Usage: my_program\n";

out.rel_indent(7);

out << "[-x] ! Description of -x\n";

out << "[-h] ! Write this help message\n";

make_airfoil_usage(out);

}

int main(int argc, char **argv)

{

try {

// Parse the command line arguments

std::vector<Str> afoil_args;

afoil_args.push_back(argv[0]);

int arg = 1;

while (arg < argc) {

if (Str(argv[arg]) == "-x") {

arg++;

// Handle option -x

}

else if (Str(argv[arg]) == "-h") {

usage();

return 1;

}

else {

afoil_args.push_back(argv[arg++]);

}

}

// Make the airfoil

Str name;

Airfoil<double> afoil = make_airfoil(afoil_args,name);

// The rest of the program

. . .

return 0;

}

catch(Error &e) {

std::cerr <{}< e.get_msg() <{}< ’\n’;

return 1;

}

}

48 DRDC Atlantic TM 2009-053

If invoked with

my_program -h

the following output will be written to stdout.

Usage: my_program

[-x] ! Description of -x

[-h] ! Write this help message

[file] ! A file defining the airfoil in OFFSRF format

[-D t c] ! Makes a DTMB modified NACA 66 airfoil with

! thickness t and cambre c.

[-NACA desig] ! Defines the airfoil from a NACA designation

[-j t c [te_flag]]

! Makes a Joukowski airfoil with thickness t

! and cambre c. If te_flag is 1, the first

! derivative of the airfoil xi-curve will be

! finite at the trailing edge. Otherwise it

! will be zero (the default).

[-cte [method [arg]]]

! Close trailing edge. method can be e (close

! by extension), p (close with parabola) or

! b (blunt closure). e and p can only be

! used in conjunction with -NACA or -D. If

! method is p, then the optional arg gives

! the starting zeta value for the parabola.

! If method is b, then the optional arg gives

! the value of alpha; the airfoil is modified

! over a distance alpha times the trailing

! edge gap. If method is not present, a

! default closure is used.

9 Concluding remarks

The Airfoil library is a collection of C++ classes for representing the geometry of
airfoils. It is based on the CurveLib library [1] for representing differentiable curves.
Several families of airfoils are represented explicitly in the Airfoil library: Joukowski
airfoils, NACA 4-digit, 5-digit, 16-series and 6-series airfoils [2], and the David Taylor
Model Basin (DTMB) modification of the NACA 66 airfoil commonly used in marine
propellers. Generic airfoils can be generated from offsets on the airfoil surface, or from
mean lines and thickness curves. Methods for closing the trailing edges of airfoils with

DRDC Atlantic TM 2009-053 49

trailing edge gaps are also implemented (Section 6.1.2 and Annex B).

Classes are also provided for defining airfoils from data in a file in OFFSRF format [6]
and for specifying an airfoil from the program command line.

50 DRDC Atlantic TM 2009-053

References

[1] Hally, D. (2006), C++ classes for representing curves and surfaces:
Part I: Multi-parameter differentiable functions, (DRDC Atlantic TM 2006-254)
Defence R&D Canada – Atlantic.

[2] Abbott, I. H. and von Doenhoff, A. E. (1958), Theory of Wing Sections, Dover
Publications Inc., New York.

[3] Fritsch, F. N. and Carlson, R. E. (1980), Monotone Piecewise Cubic
Interpolation, SIAM Journal of Numerical Analysis, 17, 238.

[4] Hally, D. (2006), C++ classes for representing curves and surfaces:
Part II: Splines, (DRDC Atlantic TM 2006-255) Defence R&D Canada –
Atlantic.

[5] Brockett, T. (1966), Minimum Pressure Envelopes for Modified NACA-66
Sections with NACA a = 0.8 Camber and BuShips Type I and Type II Sections,
(Report 1780) David W. Taylor Naval Ship Research and Development Center.

[6] Hally, D. (1994), C++ Classes for Reading and Writing files in OFFSRF
Format, (DREA Tech.Comm. 94/302) Defence R&D Canada – Atlantic.

[7] Hally, D. (2006), C++ classes for representing curves and surfaces:
Part IV: Distribution functions, (DRDC Atlantic TM 2006-257) Defence R&D
Canada – Atlantic.

DRDC Atlantic TM 2009-053 51

This page intentionally left blank.

52 DRDC Atlantic TM 2009-053

Annex A: Integrating mean lines

Thin airfoil theory provides expressions for the angle of zero lift, the ideal angle of
attack and the pitching moment coefficient in terms of integrals of a canonical mean
line along the chord line: see Equations (32)–(34). This annex discusses the methods
for evaluating these integrals.

First suppose that the mean line is a polynomial,

p(ζ) =
N∑

n=0

cnζ
n (A.1)

and we wish to evaluate the portion of the integral on ζ ∈ [a, b]. Then it is clearly
sufficient to be able to evaluate the integrals

Ji,n(ζ) =

∫
ζnfi(ζ) dζ (A.2)

for i = 1, 2 or 3. Let

In(ζ) =

∫
ζn−1/2

(1− ζ)3/2
dζ (A.3)

Integrate by parts to get

In(ζ) = ζnI0(ζ)− n

∫
ζn−1I0(ζ) dζ (A.4)

= ζnI0(ζ)− 2n

∫
ζn−1/2

(1− ζ)1/2
dζ (A.5)

= ζnI0(ζ)− 2n
(
In(ζ)− In+1(ζ)

)
(A.6)

Therefore

In+1(ζ) =
(2n + 1)In(ζ)− ζnI0(ζ)

2n
(A.7)

provided that n > 0. The first few In(ζ) are

I−1(ζ) =
2(2ζ − 1)√

ζ(1− ζ)
(A.8)

I0(ζ) = 2

√
ζ

1− ζ
(A.9)

I1(ζ) = arcsin(1− 2ζ) + I0(ζ) (A.10)

I2(ζ) =
3 arcsin(1− 2ζ) + (3− ζ)I0(ζ)

2
(A.11)

I3(ζ) =
15 arcsin(1− 2ζ) + (15− 5ζ − 2ζ2)I0(ζ)

8
(A.12)

DRDC Atlantic TM 2009-053 53

Now we can write

J1,n(ζ) = In(ζ) (A.13)

J2,n(ζ) = In(ζ)− 3In+1(ζ) + 2In+2(ζ) (A.14)

J3,n(ζ) = In−1(ζ)− 2In(ζ) (A.15)

The integrals of the polynomial over [a, b] are then:∫ b

a

p(ζ)fi(ζ) dζ =
N∑

n=0

cn

(
Ji,n(b)− Ji,n(a)

)
(A.16)

for i = 1, 2 or 3. Notice that if a = 0, then c0 = 0, since the mean line is canonical.
We can then increase the lower limit of n to 1. Since In(0) is well-defined for all n ≥ 0,
Ji,n(0) is also well-defined for all n ≥ 1 and the integrals are still easily evaluated.
However, more care is needed for the case when b = 1 since In(1) is not well-defined
for any n. In this case we redefine the polynomial as an expansion around ζ = 1:

p(ζ) =
N∑

n=0

dn(1− ζ)n (A.17)

Then we have ∫ b

a

p(ζ)fi(ζ) dζ =
N∑

n=0

dn

(
Ki,n(b)−Ki,n(a)

)
(A.18)

with

Ki,n(ζ) =

∫
(1− ζ)nfi(ζ) dζ (A.19)

Let u = 1− ζ. Then

K1,n(ζ) = −
∫

unf1(1− u) du = −
∫

un−3/2

√
1− u

du = In(1− ζ)− In−1(1− ζ) (A.20)

K2,n(ζ) = −
∫

unf2(1− u) du =

∫
un(1− 2u)√

u(1− u)
du = J2,n(1− ζ) (A.21)

K3,n(ζ) = −
∫

unf3(1− u) du =

∫
un(1− 2u)√
u3(1− u)3

du = J3,n(1− ζ) (A.22)

(A.23)

Because the mean line is canonical, when b = 1, d0 = 0. Therefore the minimum
value of n is 1 and Ki,n(1) is well-defined.

Finally we must consider the case when we integrate over the full interval [0,1]. In
this case the polynomial p(ζ) must be of the form

p(ζ) = ζ(1− ζ)q(ζ) =
N−2∑
n=0

anζ
n (A.24)

54 DRDC Atlantic TM 2009-053

Let

Qn =

∫ 1

0

ζn−1/2

√
1− x

dx (A.25)

It is easy to determine that Q0 = π. For n > 0 we can integrate by parts to get

Qn = −2ζn−1/2
√

1− x
∣∣1
0
+ 2(n− 1

2
)

∫ 1

0

ζn−3/2
√

1− x dx

= (2n− 1)

∫ 1

0

ζn−3/2 − ζn−1/2

√
1− x

dx = (2n− 1)(Qn−1 −Qn) (A.26)

Therefore

Qn =
(2n− 1)Qn−1

2n
=

(2n)!π

(2nn!)2
(A.27)

We can now write

α0 = − 1

π

∫ 1

0

ζ(1− ζ)q(ζ)f1(ζ) dζ = − 1

π

N−2∑
n=0

anQn+1 (A.28)

Cm = 2

∫ 1

0

ζ(1− ζ)q(ζ)f2(ζ) dζ +
π

2
α0

= 2
N−2∑
n=0

an(Qn+1 − 3Qn+2 + 2Qn+3) +
π

2
α0

= 1
2

N−2∑
n=0

an(3Qn+1 − 12Qn+2 + 8Qn+3) = −
N−2∑
n=0

(n + 6)(2n + 1)anQn

4(n + 2)(n + 3)
(A.29)

αi =
1

2π

∫ 1

0

ζ(1− ζ)q(ζ)f3(ζ) dζ

=
1

2π

N−2∑
n=0

an(Qn − 2Qn+1) = − 1

2π

N−2∑
n=0

nanQn

n + 1
(A.30)

If the mean line is represented by a spline, we can use these expressions to evaluate
the integrals on each polynomial segment of the spline. For the case of an arbitrary
canonical mean line, we first approximate the mean line with a spline, then use the
spline to calculate the integrals.

DRDC Atlantic TM 2009-053 55

This page intentionally left blank.

56 DRDC Atlantic TM 2009-053

Annex B: Blunt closure of an airfoil

In this annex we describe the algorithm used to close the trailing edge of an airfoil
defined using the complete airfoil curve. The curve x(ξ) is modified so that near the
trailing edge it approximates an elliptical arc with radius of curvature r. Let ∆ be the
trailing edge gap: ∆ = |x(1)− x(0)|. Then the width of the ellipse is approximately
∆. Let its length be 2a. Then the radius of curvature at the trailing edge is r = ∆2/4a
and a = ∆2/4r.

Let t̂ be an aft-pointing unit vector tangent to the mean line at the trailing edge and
let n̂ be an upward-pointing unit normal to the mean line at the trailing edge. Let
X and Y be coordinates aligned with n̂ and t̂ and with origin at the trailing edge:

X = t̂ · (x− xte); Y = n̂ · (x− xte) (B.1)

(see Figure B.1). We will also denote by
(
X(ξ), Y (ξ)

)
the value of the ξ-curve in this

coordinate system: i.e.

X(ξ) = n̂ ·
(
x(ξ)− xte

)
; Y (ξ) = t̂ ·

(
x(ξ)− xte

)
(B.2)

Let ξp be the value of ξ in the range [0, 1
2
] such that X(ξp) = −a. Similarly, ξs is the

value of ξ in the range [1
2
, 1] such that X(ξs) = −a. It is important to note that if

the required radius of curvature is large (so a is small) and the trailing edge gap is
oblique to the mean line, one of ξp or ξs may not be defined: see Figure B.2.

In the region ξ ∈ [0, ξp] we replace the ξ-curve with

xnew(ξ) = Xp(ξ)t̂ + Yp(ξ)n̂ (B.3)

where

Xp(ξ) = X(ξp) +
(
η(ξ)− ξp

)
X ′(ξp)−

(
X(ξp)− ξpX

′(ξp)
)(η(ξ)− ξp

)2
ξ2
p

(B.4)

Yp(ξ) = −
√

2rη(ξ) + cpη(ξ) + dpη(ξ)2 (B.5)

cp = 3

√
r

2ξp

+
2Y (ξp)

ξp

− Y ′(ξp) (B.6)

dp = −
√

r

2ξ3
p

− Y (ξp)

ξ2
p

+
Y ′(ξp)

ξp

(B.7)

η(ξ) =
ξ2(2ξp − ξ)

ξ2
p

(B.8)

This is continuous and smooth at ξ = ξp. The function η(ξ) is simply a reparametriza-
tion which ensures that the derivatives at ξ = 0 are well-defined. It is quadratic in ξ

DRDC Atlantic TM 2009-053 57

X

Y

Original Curve

New Curve

Mean Line

ξs

ξp

Figure B.1: Blunt trailing edge closure
for an airfoil defined using the complete
airfoil curve.

X

Y

a

Original Curve

Mean Line

ξs?

ξp

ξ = 1

ξ = 0

Figure B.2: A case in which ξs is not
well defined because the trailing edge
gap crosses the mean line obliquely.

near zero (so that the square root term in Equation (B.5) is linear in ξ) and satisfies
η(ξp) = ξp and η′(ξp) = 1 so that it joins smoothly to the standard parameterization
at ξ = ξp.

Similarly, in the region ξ ∈ [ξs, 1] we define

xnew(ξ) = Xs(ξ)t̂ + Ys(ξ)n̂ (B.9)

with

Xs(ξ) = X(ξs) +
(
η(ξ)− ξs

)
X ′(ξs)−

(
X(ξs) + (1− ξs)X

′(ξs)
)(η(ξ)− ξs

)2
(1− ξs)2

(B.10)

Ys(ξ) =
√

2r
(
1− η(ξ)

)
+ cs

(
1− η(ξ)

)
+ ds

(
1− η(ξ)

)2
(B.11)

cs = −3

√
r

2(1− ξs)
+

2Y (ξs)

(1− ξs)
+ Y ′(ξs) (B.12)

ds =

√
r

2(1− ξs)3
− Y (ξs)

(1− ξs)2
− Y ′(ξs)

(1− ξs)
(B.13)

η(ξ) = 1− (1− ξ)2(1− 2ξs + ξ)

(1− ξs)2
(B.14)

58 DRDC Atlantic TM 2009-053

Annex C: Prototypes for FormattedOStream

A FormattedOStream is an output stream which does some basic formatting of the
output characters. A line width can be set so that the output will wrap nicely if a
line is too long. An indent level can be set so that all lines are indented on the left.

A FormattedOStream is intended for output to a computer terminal.

A FormattedOStream adapts an underlying std::ostream: i.e. all the output is
done via the std::ostream; the FormattedOStream simply adds spaces and new line
characters where appropriate to generate the required formatting.

C.1 Constructors

FormattedOStream has two constructors:

FormattedOStream()
The underlying std::ostream is std::cout. The initial indentation is zero
and the number of columns of output is 79.

FormattedOStream(std::ostream &os)
Creates a FormattedOStream which adapts os. The initial indentation is zero
and the number of columns of output is 79.

C.2 Indentation functions

The following three member functions can be used to control the indentation.

int get_indent() const

Returns the current level of indentation.

int indent(int i)
Sets the level of indentation to i and returns the previous value. The new level
of indentation will not be negative.

void rel_indent(int i)
Increments the level of indentation by i. The new level of indentation will not
be negative.

DRDC Atlantic TM 2009-053 59

C.3 Line length functions

The following functions can be used to control the line length (number of columns of
output).

int get_num_cols() const

Returns the current number of columns of output.

int num_columns(int i)
Sets the number of columns of output to i and returns the previous value. The
new value will not be smaller than 1.

void rel_num_columns(int i)
Increments the number of columns by i. The new value will not be less than 1.

C.4 Inserters

The following insertion operators are defined.

FormattedOStream& operator<<(const char* s)

Writes a string formatted using the current indentation and number of columns.

FormattedOStream& operator<<(const std::string &s)

Writes a string formatted using the current indentation and number of columns.

FormattedOStream& operator<<(

FormattedOStream& (*f)(FormattedOStream&))

An inserter for no-argument manipulators.

FormattedOStream& operator<<(std::ios& (*f)(std::ios&))

An inserter for standard no-argument manipulators.

template<class T>

FormattedOStream& operator<<(const T &t)

Converts t to a character string then writes the formatted string. The con-
version is done by writing t to a std::ostringstream; therefore t must be
writable.

C.5 Other member functions

unsigned number_of_lines() const

Returns the number of lines written to the stream.

60 DRDC Atlantic TM 2009-053

std::ostream& base_stream()
Returns the stream being adapted.

The following functions are all implemented by applying the corresponding function
in namespace std to the underlying std::ostream:

std::ios::fmtflags flags() const

std::ios::fmtflags flags(std::ios::fmtflags f)

std::ios::fmtflags setf(std::ios::fmtflags f)

std::ios::fmtflags setf(std::ios::fmtflags flag, std::ios::fmtflags m)

void unsetf(std::ios::fmtflags mask)

std::streamsize precision() const

std::streamsize precision(std::streamsize p)

std::streamsize width() const

std::streamsize width(std::streamsize w)

char_type fill() const

char_type fill(char_type c)

bool good() const

bool eof() const

bool fail() const

bool bad() const

operator void*() const

bool operator!() const

void flush()

C.6 Manipulators

The manipulators resetiosflags, setiosflags, setbase, setfill, setprecision
and setw are all defined for a FormattedOStream. They are each similar to the cor-
responding manipulator in namespace std applied to the underlying std::ostream.
In addition, the following special purpose manipulator is defined.

indent
Writes spaces until the indentation level is reached. If the current location is to
the right of the indentation, nothing is done.

DRDC Atlantic TM 2009-053 61

List of symbols

α Angle of attack.

α0 Angle of attack which generates zero lift according to thin airfoil theory.

αi The ideal angle of attack.

∆ The thickness at the trailing edge: |x(1)− x(0)|.

θ An angle used to traverse circles in the complex plane defining Joukowski
airfoils.

Φ The complex potential for the flow past a Joukowski airfoil.

φ An angle used to identify the leading and trailing edges of a Joukowski
airfoil when represented in the q-plane.

η Parameter used to avoid zero derivatives at the trailing edge of a
Joukowski airfoil.

ξ Non-dimensional airfoil parameter increasing from 0 on the pressure side,
through 1

2
at the leading edge, to 1 at the trailing edge on the suction side.

ζ The fractional chord length along the straight line joining the leading
edge (ζ = 0) to the trailing edge (ζ = 1).

ζj The value of ζ at which the two segments of a NACA 5-digit mean line
offset curve join.

ζm The value of ζ at which a mean line has its maximum deviation from the
chord line.

A, B Constants used when defining Joukowski airfoils.

a The location of the trailing edge of a Joukowski airfoil in the complex
q-plane. Also used for fractional arclength around an airfoil. Also used as
a parameter for mean lines with constant load distributions.

c The cambre of an airfoil: i.e. the maximum deviation of the mean line
from the chord line.

C The centre of the circle defining a Joukowski airfoil in the complex
q-plane.

CL The lift coefficient.

62 DRDC Atlantic TM 2009-053

CLi The lift coefficient at the ideal angle of attack: the ideal or design lift
coefficient.

Cm The pitching moment coefficient about one-quarter chord.

f1, f2, f3 Functions used to calculate α0, αi, CLi and Cm according to thin airfoil
theory.

k1 Parameter used to define NACA 5-digit mean lines.

m(ζ) The mean line parameterized using ζ.

n̂ A unit normal to the airfoil or mean line.

nx, ny Components of n̂.

p(ζ) The pressure side of the airfoil surface parameterized using ζ.

p A complex number used to define Joukowski airfoils. In the p-plane the
leading edge is at (−2a, 0) and the trailing edge is at (2a, 0).

q A complex number used to define Joukowski airfoils. In the q-plane the
airfoil surface is a circle centred at C passing through (a, 0).

s(ζ) The suction side of the airfoil surface parameterized using ζ.

p A complex number used to define Joukowski airfoils. In the w-plane the
airfoil is canonical.

r Radius of curvature at the leading or trailing edge.

t The thickness of an airfoil.

V The speed of flow at infinity past a Joukowski airfoil.

vx − ivy Complex velocity.

x(ξ) The airfoil surface parameterized using ξ.

xle The point at the leading edge; equal to x
(

1
2

)
, p(0) and s(0).

xte The point at the trailing edge; equal to 1
2

(
x(0
)

+ x(1)
)

and
1
2

(
p(1
)

+ s(1)
)
.

z Complex number used to define Joukowski airfoils. In the z-plane the
airfoil surface is the unit circle.

DRDC Atlantic TM 2009-053 63

Index
Airfoil<F>, 4–7, 8, 9, 15, 20, 21, 43
AirfoilReader<F>, 39–42, 43–46
Angle<F>, 39
ArcMeanLineOffset<F>, 30–31

BSplineOffsetAirfoil<F>, 9–12

ConstLoadMeanLineOffset<F>,
28–30, 38

Curve<N,V,F>, 4
CurveLib classes

Curve<1U,F,F>, 22, 23, 32
Curve<N,V,F>, 3–5, 14, 16

Error, 35, 39, 43, 44
exceptions

Error, 3, 5, 21, 32
ProgError, 3, 7, 32
UnknownNACADesignation, 35, 37

FormattedOStream, 47, 59–61

InvJoukowskiMapping<F>, 15

JoukowskiMapping<F>, 14–15
JoukowskiPotential<F>, 16–17
JoukowskiVelocity<F>, 16–17

manipulators
resetiosflags, 61
setbase, 61
setfill, 61
setiosflags, 61
setprecision, 61
setw, 61

mean line, 2, 5
mean line offset curve, 19, 21–31, 35,

38
circular arc, 30–31
constant load, 28–30
from offsets, 31
from PP-splines, 23–24
NACA 4-digit, 23–26

NACA 5-digit, 26–28
MeanLineOffset<F>, 20, 21–23, 24,

29
MeanLineOffsetReader<F>, 45, 45

NACA airfoils, 35–38
16-series, 1, 28, 35, 37, 49
4-digit, 1, 23, 24, 34, 35, 37, 49
5-digit, 1, 26, 34, 35, 37, 49
6-series, 1, 29, 35, 38, 49

NACA4DigitMeanLineOffset<F>,
24–26, 37

NACA4DigitThicknessCurve<F>, 34,
37

NACA5DigitMeanLineOffset<F>,
26–28, 37

NACA66DTMBmod<F>, 38–39
NACAAirfoil<F>, 4, 5, 35–38, 41
namespaces

Afoil, 4, 16
CurveLib, 3–5, 14, 16, 22, 23, 32
Offsrf, 39
Spline, 23, 24, 31
std, 3, 14, 39, 46, 59–61
VecMtx, 3, 4

OffsetAirfoil<F>, 8–9, 9
OffsetMeanLineOffset<F>, 31
OffsetThicknessCurve<F>, 34–35
Offsrf classes

IFStream, 39

PPSplineMeanLineOffset<F>, 23–24,
25, 27

Spline classes
CubicSpline<F,F>, 31
KnotSeq<F>, 31
PPSpline<F,F>, 23, 24

std classes
cerr, 3
complex<F>, 14

64 DRDC Atlantic TM 2009-053

cout, 59
ios, 60, 61
istream, 39
ostream, 59, 61
ostringstream, 60
string, 46

ThickCurveReader<F>, 45–46
ThickDistAirfoil<F>, 19–21, 35, 38,

43, 44
ThickDistAirfoilReader<F>, 43,

43–45
ThickDistAirfoilreader<F>, 43
thickness curve, 19, 20, 31–35, 35, 37,

38
from offsets, 34–35
NACA 4-digit, 34

ThicknessCurve<1U,F,F>, 35
ThicknessCurve<F>, 20, 31–33, 34
ThicknessCurveReader<F>, 45
TrailingEdgeSpec, 8

VecMtx classes
VecN<N,F>, 3, 4

DRDC Atlantic TM 2009-053 65

This page intentionally left blank.

66 DRDC Atlantic TM 2009-053

Distribution list

DRDC Atlantic TM 2009-053

Internal distribution

1 Author

3 Library (1 paper, 2 CDs)

Total internal copies: 4

External distribution

Department of National Defence

1 DRDKIM

2 DMSS 2

Others

1 Library and Archives Canada
(normally 1 copy) 395 Wellington Street
Ottawa, Ontario
K1A ON4
Attn: Military Archivist, Government Records Branch

1 Director-General
Institute for Marine Dynamics
National Research Council of Canada
P.O. Box 12093, Station A
St. John’s, Newfoundland
A1B 3T5

1 Director-General
Institute for Aerospace Research
National Research Council of Canada
Building M-13A
Ottawa, Ontario
K1A OR6

DRDC Atlantic TM 2009-053 67

1 Transport Development Centre
Transport Canada
6th Floor
800 Rene Levesque Blvd, West
Montreal, Que.
H3B 1X9
Attn: Marine R&D Coordinator

1 Canadian Coast Guard
Ship Safety Branch
Canada Building, 11th Floor
344 Slater Street
Ottawa, Ontario
K1A 0N7
Att: Chief, Design and Construction

MOUs

6 Canadian Project Officer ABCA-02-01 (C/SCI, DRDC Atlantic – 3 paper
copies, 3 PDF files on CDROM)

Total external copies: 14

Total copies: 18

68 DRDC Atlantic TM 2009-053

DOCUMENT CONTROL DATA
(Security classification of title, body of abstract and indexing annotation must be entered when document is classified)

1. ORIGINATOR (The name and address of the organization preparing the
document. Organizations for whom the document was prepared, e.g. Centre
sponsoring a contractor’s report, or tasking agency, are entered in section 8.)

Defence R&D Canada – Atlantic
PO Box 1012, Dartmouth NS B2Y 3Z7, Canada

2. SECURITY CLASSIFICATION (Overall
security classification of the document
including special warning terms if applicable.)

UNCLASSIFIED

3. TITLE (The complete document title as indicated on the title page. Its classification should be indicated by the appropriate
abbreviation (S, C or U) in parentheses after the title.)

C++ classes for representing airfoils

4. AUTHORS (Last name, followed by initials – ranks, titles, etc. not to be used.)

Hally, D.

5. DATE OF PUBLICATION (Month and year of publication of
document.)

January 2010

6a. NO. OF PAGES (Total
containing information.
Include Annexes,
Appendices, etc.)

80

6b. NO. OF REFS (Total
cited in document.)

7

7. DESCRIPTIVE NOTES (The category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter
the type of report, e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is
covered.)

Technical Memorandum

8. SPONSORING ACTIVITY (The name of the department project office or laboratory sponsoring the research and development –
include address.)

Defence R&D Canada – Atlantic
PO Box 1012, Dartmouth NS B2Y 3Z7, Canada

9a. PROJECT OR GRANT NO. (If appropriate, the applicable
research and development project or grant number under
which the document was written. Please specify whether
project or grant.)

Project 11cd23

9b. CONTRACT NO. (If appropriate, the applicable number under
which the document was written.)

10a. ORIGINATOR’S DOCUMENT NUMBER (The official
document number by which the document is identified by the
originating activity. This number must be unique to this
document.)

DRDC Atlantic TM 2009-053

10b. OTHER DOCUMENT NO(s). (Any other numbers which may
be assigned this document either by the originator or by the
sponsor.)

11. DOCUMENT AVAILABILITY (Any limitations on further dissemination of the document, other than those imposed by security
classification.)

(X) Unlimited distribution
() Defence departments and defence contractors; further distribution only as approved
() Defence departments and Canadian defence contractors; further distribution only as approved
() Government departments and agencies; further distribution only as approved
() Defence departments; further distribution only as approved
() Other (please specify):

12. DOCUMENT ANNOUNCEMENT (Any limitation to the bibliographic announcement of this document. This will normally correspond
to the Document Availability (11). However, where further distribution (beyond the audience specified in (11)) is possible, a wider
announcement audience may be selected.)

13. ABSTRACT (A brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly
desirable that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the
security classification of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), or (U). It is
not necessary to include here abstracts in both official languages unless the text is bilingual.)

A library of C++ classes for representing the geometry of airfoils is described. The classes
are based on the CurveLib library for representing differentiable curves. Airfoils that have been
represented explicitly include Joukowski airfoils, the NACA 4-digit, 5-digit, 16-series and 6-series
airfoils, as well as the DTMB modification of the NACA 66 airfoils commonly used for marine
propellers. Generic airfoils can be defined from offsets on the airfoil surface or from offsets
defining mean line and thickness curves. Several methods for closing the trailing edges of airfoils
with a trailing edge gap are also implemented.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (Technically meaningful terms or short phrases that characterize a document and could
be helpful in cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as
equipment model designation, trade name, military project code name, geographic location may also be included. If possible keywords
should be selected from a published thesaurus. e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus identified.
If it is not possible to select indexing terms which are Unclassified, the classification of each should be indicated as with the title.)

Airfoils
NACA airfoils
Joukowski airfoils
Geometry
C++
computer programs

This page intentionally left blank.

	Abstract
	Résumé
	Executive summary
	Sommaire
	Table of contents
	List of figures
	1 Introduction
	2 Airfoil geometry
	3 Subsidiary classes
	3.1 Exceptions

	4 The base airfoil class
	5 Airfoils defined by specifying the complete airfoil curve
	5.1 Airfoils defined using offsets
	5.1.1 Offsets splined using a standard cubic spline
	5.1.2 Offsets splined using B-splines

	5.2 Joukowski airfoils
	5.2.1 The Joukowski conformal mapping
	5.2.2 A class to represent a Joukowski airfoil
	5.2.3 Classes to represent the potential flow around a Joukowski airfoil

	6 Airfoils defined by specifying pressure and suction side curves
	6.1 Airfoils defined using a thickness curve and a mean line offset curve
	6.1.1 Classes to represent mean line offset curves
	6.1.1.1 Mean line offset curves constructed from piecewise polynomial splines
	6.1.1.2 NACA 4-digit mean line offset curve
	6.1.1.3 NACA 5-digit mean line offset curve
	6.1.1.4 Constant load mean line offset curve
	6.1.1.5 Mean line offset curves which are circular arcs
	6.1.1.6 Mean line offset curves derived from offsets

	6.1.2 Classes to represent thickness curves
	6.1.2.1 NACA 4-digit thickness curves
	6.1.2.2 Thickness curve derived from offsets

	6.1.3 NACA airfoils
	6.1.4 The DTMB modification of the NACA 66 airfoil

	7 Defining airfoils from files
	7.1 The CLOSE TRAILING EDGE record
	7.2 BLUNT TRAILING EDGE
	7.3 The JOUKOWSKI record
	7.4 The NACA record
	7.5 The NACA 66 DTMB(mod) record
	7.6 The NAME record
	7.7 The OFFSETS record
	7.8 The THICKNESS DISTRIBUTION AIRFOIL record
	7.9 Defining thickness distribution airfoils from files
	7.9.1 A class for defining mean line offset curves from a file
	7.9.2 A class for defining thickness curves from a file

	8 Defining an airfoil from the command line
	9 Concluding remarks
	References
	Annex A Integrating mean lines
	Annex B Blunt closure of an airfoil
	Annex C Prototypes for FormattedOStream
	C.1 Constructors
	C.2 Indentation functions
	C.3 Line length functions
	C.4 Inserters
	C.5 Other member functions
	C.6 Manipulators

	List of symbols
	Index

